Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractOlfactory detectability of L-amino acids in the European honeybee (Apis mellifera)    Next AbstractOviposition responses of Anopheles gambiae s.s. (Diptera: Culicidae) and identification of volatiles from bacteria-containing solutions »

Environ Entomol


Title:White-tailed deer alter specialist and generalist insect herbivory through plant traits
Author(s):Lind EM; Myron EP; Giaccai J; Parker JD;
Address:"Smithsonian Environmental Research Center, 647 Contees Wharf Rd., Edgewater, MD 21037, USA. elind@umn.edu"
Journal Title:Environ Entomol
Year:2012
Volume:41
Issue:6
Page Number:1409 - 1416
DOI: 10.1603/EN12094
ISSN/ISBN:1938-2936 (Electronic) 0046-225X (Linking)
Abstract:"Within a plant species, leaf traits can vary across environmental, genetic, spatial, and temporal gradients, even showing drastic differences within individuals. Herbivory can also induce variation in leaf morphology, defensive structure, and chemistry including nutritional content. Indirect effects of prior insect herbivory on later herbivores have been well documented, but the induction of trait changes after vertebrate herbivory has been little explored. Here, we examined how browsing of spicebush (Lindera benzoin L.), a dominant understory shrub in eastern mesic forests, by white-tailed deer (Odocoileus virginianus L.) altered plant quality and subsequent foliar herbivory by insects. Browsing history explained approximately 10% of overall leaf trait variation; regenerated leaves had greater water content and specific leaf area (P = 0.009), but were lower in nitrogen and greater in carbon (P < 0.001), than leaves on unbrowsed plants. However, browsing did not shift terpene chemistry as revealed by GC-MS. In the lab, caterpillars of the specialist spicebush swallowtail (Papilio troilus L.) preferred (P = 0.02) and grew 20% faster (P = 0.02) on foliage from browsed plants; whereas total herbivory in the field, including generalist insect herbivory, was twice as high on unbrowsed plants (P = 0.016). These results suggest that the ecological impacts of deer in forest understories can have cascading impacts on arthropod communities by changing the suitability of host-plants to insect herbivores"
Keywords:Animals Butterflies/growth & development/physiology Carbon/metabolism Deer/*physiology Food Chain Gas Chromatography-Mass Spectrometry *Herbivory Insecta/*physiology Larva/growth & development/physiology Lindera/metabolism Nitrogen/metabolism Plant Leaves;
Notes:"MedlineLind, Eric M Myron, Emily P Giaccai, Jennifer Parker, John D eng Research Support, U.S. Gov't, Non-P.H.S. England 2013/01/17 Environ Entomol. 2012 Dec; 41(6):1409-16. doi: 10.1603/EN12094"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 26-12-2024