Title: | Gas Adsorption at Metal Sites for Enhancing Gas Sensing Performance of ZnO@ZIF-71 Nanorod Arrays |
Author(s): | Zhou T; Sang Y; Sun Y; Wu C; Wang X; Tang X; Zhang T; Wang H; Xie C; Zeng D; |
Address: | "State Key Laboratory of Materials and Processing Die and Mould Technology, Nanomaterials and Smart Sensors Research Laboratory, Department of Materials Science and Engineering , Huazhong University of Science and Technology , No. 1037, Luoyu Road , Wuhan 430074 , China. Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials , Hubei University , Wuhan 430062 , China" |
DOI: | 10.1021/acs.langmuir.8b02642 |
ISSN/ISBN: | 1520-5827 (Electronic) 0743-7463 (Linking) |
Abstract: | "The detection of trace amount of volatile organic compounds (VOCs) has been covered by tons of researches, which are dedicated to improve the detection limit and insensitivity to humidity. In this work, we have synthesized ZnO@ZIF-71 nanorod arrays (NRAs) equipped with the adsorption effect at metal site that promoted the detection limit of ethanol and acetone, to which also have great selectivity. The gas sensor not only exhibits shorter response/recovery time (53/55% for ethanol, 48/31% for acetone), but also excellent insensitivity to humidity and improved detection limit (10x improved at 21 ppb for ethanol, 4x at 3 ppb for acetone) at low working temperature (150 degrees C). By the analysis of in situ diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy and calculation of density functional theory (DFT), the mechanism of enhanced gas sensing performance from ZnO@ZIF-71 NRAs is proved. It shows ethanol and acetone gas molecules can be adsorbed at the metal sites of ZIF-71. This work provides a new idea to improve the detection limit and humidity-insensitivity of gas sensor toward specific gas molecules" |
Notes: | "PubMed-not-MEDLINEZhou, Tingting Sang, Yutong Sun, Yanling Wu, Congyi Wang, Xiaoxia Tang, Xing Zhang, Tian Wang, Hao Xie, Changsheng Zeng, Dawen eng 2019/02/15 Langmuir. 2019 Mar 5; 35(9):3248-3255. doi: 10.1021/acs.langmuir.8b02642. Epub 2019 Feb 21" |