Title: | Cabbage-shaped zinc-cobalt oxide (ZnCo(2)O(4)) sensing materials: Effects of zinc ion substitution and enhanced formaldehyde sensing properties |
Author(s): | Zhou T; Sui N; Zhang R; Zhang T; |
Address: | "State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China. State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China. Electronic address: zhangtong@jlu.edu.cn" |
DOI: | 10.1016/j.jcis.2018.11.030 |
ISSN/ISBN: | 1095-7103 (Electronic) 0021-9797 (Linking) |
Abstract: | "Exploiting chemical sensors (CSs) with high-activity sensitive materials is very important for the detection of volatile organic compounds (VOCs). Co-containing spinel oxides are potential candidates for sensing layers. However, the intrinsic activity always hinders their further progress of sensing performances such as sensitivity and selectivity. Here, a facile strategy is successfully developed for the substitution of Co cations into Zn cations in Co(3)O(4) without sacrificing multi-shelled hollow structure. The synthesized cabbage-shaped ZnCo(2)O(4) exhibited the enhanced formaldehyde sensing capability compared to the Co(3)O(4) counterpart. The sensitivity to 100?ª+ppm formaldehyde for ZnCo(2)O(4)-sensors is 7.4 at 180?ª+ degrees C, which is 6.2 times higher than that of Co(3)O(4)-sensors. In addition, the ZnCo(2)O(4)-sensors also show the fast response/recovery time (9/12?ª+s) compared to Co(3)O(4)-sensors (55/63?ª+s). Interestingly, Zn(2+) introduction can facilitate the accumulation of holes and generate more defective oxygen and adsorbed oxygen effectively. Consequently, remarkably improved sensitivity, selectively and fast response/recovery process are demonstrated for the ZnCo(2)O(4)-based sensors. The results offer crucial insights in realization of highly sensitive spinel oxide materials for CSs" |
Keywords: | Cabbage-shaped ZnCo(2)O(4) Chemical sensors Formaldehyde Improved sensitivity Multi-shelled hollow structure; |
Notes: | "PubMed-not-MEDLINEZhou, Tingting Sui, Ning Zhang, Rui Zhang, Tong eng 2018/11/25 J Colloid Interface Sci. 2019 Mar 1; 537:520-527. doi: 10.1016/j.jcis.2018.11.030. Epub 2018 Nov 10" |