Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractAttraction of Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) to four varieties of Lathyrus sativus L. seed volatiles    Next Abstract"The dynamics of cereal cyst nematode infection differ between susceptible and resistant barley cultivars and lead to changes in (1,3;1,4)-beta-glucan levels and HvCslF gene transcript abundance" »

Plant Cell


Title:"Biosynthesis and defensive function of Ndelta-acetylornithine, a jasmonate-induced Arabidopsis metabolite"
Author(s):Adio AM; Casteel CL; de Vos M; Kim JH; Joshi V; Li B; Juery C; Daron J; Kliebenstein DJ; Jander G;
Address:"Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA"
Journal Title:Plant Cell
Year:2011
Volume:20110913
Issue:9
Page Number:3303 - 3318
DOI: 10.1105/tpc.111.088989
ISSN/ISBN:1532-298X (Electronic) 1040-4651 (Print) 1040-4651 (Linking)
Abstract:"Since research on plant interactions with herbivores and pathogens is often constrained by the analysis of already known compounds, there is a need to identify new defense-related plant metabolites. The uncommon nonprotein amino acid N(delta)-acetylornithine was discovered in a targeted search for Arabidopsis thaliana metabolites that are strongly induced by the phytohormone methyl jasmonate (MeJA). Stable isotope labeling experiments show that, after MeJA elicitation, Arg, Pro, and Glu are converted to Orn, which is acetylated by NATA1 to produce N(delta)-acetylornithine. MeJA-induced N(delta)-acetylornithine accumulation occurs in all tested Arabidopsis accessions, other Arabidopsis species, Capsella rubella, and Boechera stricta, but not in less closely related Brassicaceae. Both insect feeding and Pseudomonas syringae infection increase NATA1 expression and N(delta)-acetylornithine accumulation. NATA1 transient expression in Nicotiana tabacum and the addition of N(delta)-acetylornithine to an artificial diet both decrease Myzus persicae (green peach aphid) reproduction, suggesting a direct toxic or deterrent effect. However, since broad metabolic changes that are induced by MeJA in wild-type Arabidopsis are attenuated in a nata1 mutant strain, there may also be indirect effects on herbivores and pathogens. In the case of P. syringae, growth on a nata1 mutant is reduced compared with wild-type Arabidopsis, but growth in vitro is unaffected by N(delta)-acetylornithine addition"
Keywords:"Acetates/*pharmacology Acetylation Animals Aphids/physiology Arabidopsis/genetics/*metabolism/microbiology Arabidopsis Proteins/metabolism Cyclopentanes/*pharmacology Gene Expression Regulation, Plant Herbivory Metabolome Molecular Sequence Data Mutagenes;"
Notes:"MedlineAdio, Adewale M Casteel, Clare L De Vos, Martin Kim, Jae Hak Joshi, Vijay Li, Baohua Juery, Caroline Daron, Josquin Kliebenstein, Daniel J Jander, Georg eng R37 GM048707/GM/NIGMS NIH HHS/ 3R37GM048707-17S1/GM/NIGMS NIH HHS/ Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S. England 2011/09/16 Plant Cell. 2011 Sep; 23(9):3303-18. doi: 10.1105/tpc.111.088989. Epub 2011 Sep 13"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-09-2024