Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractCharacterization of medium chain length (R)-3-hydroxycarboxylic acids produced by Streptomyces sp. JM3 and the evaluation of their antimicrobial properties    Next AbstractIdentifying energy constraints to parasite resistance »

Acc Chem Res


Title:Attributing Atmospheric Methane to Anthropogenic Emission Sources
Author(s):Allen D;
Address:"Department of Chemical Engineering and Center for Energy and Environmental Resources University of Texas at Austin , Austin, Texas 78712, United States"
Journal Title:Acc Chem Res
Year:2016
Volume:20160617
Issue:7
Page Number:1344 - 1350
DOI: 10.1021/acs.accounts.6b00081
ISSN/ISBN:1520-4898 (Electronic) 0001-4842 (Linking)
Abstract:"Methane is a greenhouse gas, and increases in atmospheric methane concentration over the past 250 years have driven increased radiative forcing of the atmosphere. Increases in atmospheric methane concentration since 1750 account for approximately 17% of increases in radiative forcing of the atmosphere, and that percentage increases by approximately a factor of 2 if the effects of the greenhouse gases produced by the atmospheric reactions of methane are included in the assessment. Because of the role of methane emissions in radiative forcing of the atmosphere, the identification and quantification of sources of methane emissions is receiving increased scientific attention. Methane emission sources include biogenic, geogenic, and anthropogenic sources; the largest anthropogenic sources are natural gas and petroleum systems, enteric fermentation (livestock), landfills, coal mining, and manure management. While these source categories are well-known, there is significant uncertainty in the relative magnitudes of methane emissions from the various source categories. Further, the overall magnitude of methane emissions from all anthropogenic sources is actively debated, with estimates based on source sampling extrapolated to regional or national scale ('bottom-up analyses') differing from estimates that infer emissions based on ambient data ('top-down analyses') by 50% or more. To address the important problem of attribution of methane to specific sources, a variety of new analytical methods are being employed, including high time resolution and highly sensitive measurements of methane, methane isotopes, and other chemical species frequently associated with methane emissions, such as ethane. This Account describes the use of some of these emerging measurements, in both top-down and bottom-up methane emission studies. In addition, this Account describes how data from these new analytical methods can be used in conjunction with chemical mass balance (CMB) methods for source attribution. CMB methods have been developed over the past several decades to quantify sources of volatile organic compound (VOC) emissions and atmospheric particulate matter. These emerging capabilities for making measurements of methane and species coemitted with methane, rapidly, precisely, and at relatively low cost, used together with CMB methods of source attribution can lead to a better understanding of methane emission sources. Application of the CMB approach to source attribution in the Barnett Shale oil and gas production region in Texas demonstrates both the importance of extensive and simultaneous source testing in the region being analyzed and the potential of CMB method to quantify the relative strengths of methane emission sources"
Keywords:
Notes:"PubMed-not-MEDLINEAllen, David eng Research Support, Non-U.S. Gov't 2016/06/18 Acc Chem Res. 2016 Jul 19; 49(7):1344-50. doi: 10.1021/acs.accounts.6b00081. Epub 2016 Jun 17"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024