Title: | Detection of volatile organic compounds using mid-infrared silicon nitride waveguide sensors |
Author(s): | Zhou J; Al Husseini D; Li J; Lin Z; Sukhishvili S; Cote GL; Gutierrez-Osuna R; Lin PT; |
Address: | "Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA. Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843, USA. Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA. Department of Computer Science and Engineering, Texas A&M University, College Station, TX, 77843, USA. Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA. paolin@ece.tamu.edu. Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843, USA. paolin@ece.tamu.edu" |
DOI: | 10.1038/s41598-022-09597-9 |
ISSN/ISBN: | 2045-2322 (Electronic) 2045-2322 (Linking) |
Abstract: | "Mid-infrared (mid-IR) sensors consisting of silicon nitride (SiN) waveguides were designed and tested to detect volatile organic compounds (VOCs). SiN thin films, prepared by low-pressure chemical vapor deposition (LPCVD), have a broad mid-IR transparent region and a lower refractive index (n(SiN) = 2.0) than conventional materials such as Si (n(Si) = 3.4), which leads to a stronger evanescent wave and therefore higher sensitivity, as confirmed by a finite-difference eigenmode (FDE) calculation. Further, in-situ monitoring of three VOCs (acetone, ethanol, and isoprene) was experimentally demonstrated through characteristic absorption measurements at wavelengths lambda = 3.0-3.6 mum. The SiN waveguide showed a five-fold sensitivity improvement over the Si waveguide due to its stronger evanescent field. To our knowledge, this is the first time SiN waveguides are used to perform on-chip mid-IR spectral measurements for VOC detection. Thus, the developed waveguide sensor has the potential to be used as a compact device module capable of monitoring multiple gaseous analytes for health, agricultural and environmental applications" |
Keywords: | Acetone Silicon Compounds *Volatile Organic Compounds; |
Notes: | "MedlineZhou, Junchao Al Husseini, Diana Li, Junyan Lin, Zhihai Sukhishvili, Svetlana Cote, Gerard L Gutierrez-Osuna, Ricardo Lin, Pao Tai eng Research Support, Non-U.S. Gov't England 2022/04/04 Sci Rep. 2022 Apr 2; 12(1):5572. doi: 10.1038/s41598-022-09597-9" |