Title: | First-Principles Evaluation of Volatile Organic Compounds Degradation in Z-Scheme Photocatalytic Systems: MXene and Graphitic-CN Heterostructures |
Author(s): | Zhou J; Li D; Zhao W; Jing B; Ao Z; An T; |
Address: | "Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China" |
Journal Title: | ACS Appl Mater Interfaces |
ISSN/ISBN: | 1944-8252 (Electronic) 1944-8244 (Linking) |
Abstract: | "It is a formidable challenge to use the traditional trial-and-error method to identify suitable catalysts for the photocatalytic degradation of volatile organic compounds (VOCs). In this work, by performing density functional theory calculations, we designed three Z-scheme g-CN/M(2)CO(2) (M = Hf, Zr, and Sc) heterostructures, which not only exhibit favorable structure stability but also show promising ability for photocatalytic degradation of VOCs. The enhancement of the photocatalytic activity of these three Z-scheme systems can be ascribed to the low recombination rate of electron-hole pairs because photoelectrons migrated from the g-CN layer to the M(2)CO(2) layer as well as the internal electric fields in the Z-scheme heterojunction. Among the three heterostructures, only g-CN/Zr(2)CO(2) presents favorable spectra utilization under photoirradiation as well as the direct band gap. As a result, in the Z-scheme g-CN/Zr(2)CO(2) heterostructure, the electrons in the conduction band of g-CN migrate to the holes in the valence band of the Zr(2)CO(2) layer, which improves extraction and utilization of photogenerated electrons in the g-CN sheet. Moreover, the Z-scheme g-CN/Zr(2)CO(2) system shows superior performance for photocatalytic VOC degradation in comparison with individual g-CN and Zr(2)CO(2), which can be attributed to the enhanced VOC adsorption capacity as well as excellent ability to photoactivate O(2) and H(2)O into (*)O(2)(-) and (*)OH radicals. Our findings pave a new promising way to facilitate the application of MXene-based materials for VOC photocatalytic degradation" |
Keywords: | MXene VOC degradation Z-scheme heterostructure density functional theory calculations photocatalysis; |
Notes: | "PubMed-not-MEDLINEZhou, Junhui Li, Didi Zhao, Weina Jing, Binghua Ao, Zhimin An, Taicheng eng 2021/05/12 ACS Appl Mater Interfaces. 2021 May 26; 13(20):23843-23852. doi: 10.1021/acsami.1c05617. Epub 2021 May 11" |