Title: | Differing Behavioural Responses of Bemisia tabaci MEAM1 and MED to Cabbage Damaged by Conspecifics and Heterospecifics |
Author(s): | Kong H; Zeng Y; Xie W; Wang S; Wu Q; Jiao X; Xu B; Zhang Y; |
Address: | "Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing 100081, China. School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China. College of Life Science, Hubei University, Wuhan 430062, China" |
ISSN/ISBN: | 2045-2322 (Electronic) 2045-2322 (Linking) |
Abstract: | "The whitefly Bemisia tabaci is a serious pest with an extensive host range. Previous research has shown that B. tabaci is a species complex with many cryptic species or biotypes and that the two most important species are MEAM1 (Middle East-Minor Asia 1) and MED (Mediterranean genetic group). MEAM1 and MED are known to differ in their preference for cabbage, Brassica oleracea, as a host plant, however, the mechanism underlying this preference is unknown. In the current study, a host choice experiment showed that MED prefers to settle and oviposit on undamaged cabbage plants rather than MED-damaged cabbage plants. However, MEAM1 prefers MED-damaged cabbage plants to undamaged plants and does not exhibit a significant preference for undamaged or MEAM1-damaged cabbage plants. On the basis of gas chromatography-mass spectrometry (GC-MS) analysis, the following volatiles were released in larger quantities from Q-damaged cabbage plants than from undamaged plants: 2-ethyl-1-hexanol, benzenemethanol, (E)-2-decenol, benzaldehyde, nonanal, acetic acid geraniol ester, 4-hydroxy-4-methyl-2-pentanone, decane, and alpha-longipinene. Only one volatile, 4-hydroxy-4-methyl-2-pentanone, was released in greater quantities from MEAM1-damaged cabbage plants than from undamaged plants. Our results suggest that differences in herbivore-induced host volatile release may help explain the differences between the preference of B. tabaci MEAM1 and MED for cabbage as a host" |
Keywords: | Animals Brassica/*metabolism Female Hemiptera/classification/*pathogenicity/physiology Herbivory Host Specificity Host-Pathogen Interactions Oviposition Plant Diseases Species Specificity Volatile Organic Compounds/metabolism; |
Notes: | "MedlineKong, Hailong Zeng, Yang Xie, Wen Wang, Shaoli Wu, Qingjun Jiao, Xiaoguo Xu, Baoyun Zhang, Youjun eng Research Support, Non-U.S. Gov't England 2016/10/13 Sci Rep. 2016 Oct 12; 6:35095. doi: 10.1038/srep35095" |