Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractPhotocatalytic degradation of air pollutant by modified nano titanium oxide (TiO(2))in a fluidized bed photoreactor: Optimizing and kinetic modeling    Next AbstractStudy on Bombykol Receptor Self-Assembly and Universality of G Protein Cellular Signal Amplification System »

Ecotoxicol Environ Saf


Title:Volatile organic compounds released from Microcystis flos-aquae under nitrogen sources and their toxic effects on Chlorella vulgaris
Author(s):Xu Q; Yang L; Yang W; Bai Y; Hou P; Zhao J; Zhou L; Zuo Z;
Address:"School of Forestry and Biotechnology, Zhejiang Agriculture & Forestry University, Lin'an 311300, China. Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China. School of Forestry and Biotechnology, Zhejiang Agriculture & Forestry University, Lin'an 311300, China; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing 48824, USA. Electronic address: zuozhaojiang@126.com"
Journal Title:Ecotoxicol Environ Saf
Year:2017
Volume:20161011
Issue:
Page Number:191 - 200
DOI: 10.1016/j.ecoenv.2016.09.027
ISSN/ISBN:1090-2414 (Electronic) 0147-6513 (Linking)
Abstract:"Eutrophication promotes massive growth of cyanobacteria and algal blooms, which can poison other algae and reduce biodiversity. To investigate the differences in multiple nitrogen (N) sources in eutrophicated water on the emission of volatile organic compounds (VOCs) from cyanobacteria, and their toxic effects on other algal growth, we analyzed VOCs emitted from Microcystis flos-aquae with different types and concentrations of nitrogen, and determined the effects under Normal-N and Non-N conditions on Chlorella vulgaris. M. flos-aquae released 27, 22, 20, 27, 19, 25 and 17 compounds, respectively, with NaNO(3), NaNO(2), NH(4)Cl, urea, Ser, Lys and Arg as the sole N source. With the reduction in N amount, the emission of VOCs was increased markedly, and the most VOCs were found under Non-N condition. C. vulgaris cell propagation, photosynthetic pigment and Fv/Fm declined significantly following exposure to M. flos-aquae VOCs under Non-N condition, but not under Normal-N condition. When C. vulgaris cells were treated with two terpenoids, eucalyptol and limonene, the inhibitory effects were enhanced with increasing concentrations. Therefore, multiple N sources in eutrophicated water induce different VOC emissions from cyanobacteria, and reduction in N can cause nutrient competition, which can result in emissions of more VOCs. Those VOCs released from M. flos-aquae cells under Non-N for nutrient competition can inhibit other algal growth. Among those VOCs, eucalyptol and limonene are the major toxic agents"
Keywords:Ammonium Chloride/metabolism Arginine/metabolism Chlorella vulgaris/*drug effects/growth & development/*physiology Cyclohexanols/pharmacology Cyclohexenes/pharmacology Eucalyptol *Eutrophication Limonene Lysine/metabolism Microcystis/*metabolism Monoterpe;
Notes:"MedlineXu, Qinghuan Yang, Lin Yang, Wangting Bai, Yan Hou, Ping Zhao, Jingxian Zhou, Lv Zuo, Zhaojiang eng Netherlands 2016/10/16 Ecotoxicol Environ Saf. 2017 Jan; 135:191-200. doi: 10.1016/j.ecoenv.2016.09.027. Epub 2016 Oct 11"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 16-01-2025