Title: | Wound- and pathogen-activated de novo JA synthesis using different ACX isozymes in tea plant (Camellia sinensis) |
Author(s): | Chen S; Lu X; Ge L; Sun X; Xin Z; |
Address: | "Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Hangzhou 310008, China. Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Hangzhou 310008, China. Electronic address: xlsun1974@163.com. Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Hangzhou 310008, China. Electronic address: xinzhaojun2003@163.com" |
DOI: | 10.1016/j.jplph.2019.153047 |
ISSN/ISBN: | 1618-1328 (Electronic) 0176-1617 (Linking) |
Abstract: | "Acyl-CoA oxidase (ACX; EC 1.3.3.6) plays a vital role in the biosynthesis of jasmonic acid (JA) in plant peroxisomes. We previously identified an herbivore-induced gene CsACX1 in tea plant (Camellia sinensis) and showed CsACX1 was involved in the wound-induced synthesis of jasmonic acid (JA). Here, another ACX gene CsACX3 was isolated from tea plant. CsACX3 was predicted to consist of 684 amino acid residues. CsACX3 can be induced by mechanical wounding, JA application, and infestation by the tea geometrid Ectropis obliqua Prout and the tea green leafhopper Empoasca (Matsumurasca) onukii Matsuda. These expression patterns are consistent with the previously reported expression pattern of CsACX1 under such treatments. Recombinant CsACX3 showed preference for medium-chain acyl-coA oxidase substrates (C(8)- to C(14)-CoA). CsACX3 expression could also be induced by the infection of a pathogen Colletotrichum gloeosporioides (Cgl), and the increased ACX activities in tea plants were correlated with the Cgl-induced CsACX3 expression. Cgl could not induce the expression of CsACX1, which showed preference for C(12)- to C(16)-CoA substrates. The constitutive expression of CsACX3 rescued wound-induced JA biosynthesis and enhanced the Cgl-induced JA biosynthesis in Arabidopsis mutant atacx1. However, constitutive expression of CsACX1 could not enhance the Cgl-induced JA biosynthesis in atacx1 plant. These results indicate that CsACX1 and CsACX3 functions overlap and have distinct roles in the wound- and pathogen-activated de novo JA synthesis via enzymatic routes that utilize different ACX isozymes in tea plant" |
Keywords: | Acyl-CoA Oxidase/*genetics/metabolism Amino Acid Sequence Animals Base Sequence Camellia sinensis/enzymology/*genetics/metabolism Colletotrichum/physiology Cyclopentanes/*metabolism Feeding Behavior Food Chain *Gene Expression Hemiptera/physiology Isoenzy; |
Notes: | "MedlineChen, Shenglong Lu, Xiaotong Ge, Lingang Sun, Xiaoling Xin, Zhaojun eng Germany 2019/10/23 J Plant Physiol. 2019 Dec; 243:153047. doi: 10.1016/j.jplph.2019.153047. Epub 2019 Oct 1" |