Title: | Mutation of doublesex in Hyphantria cunea results in sex-specific sterility |
Author(s): | Li X; Liu Q; Liu H; Bi H; Wang Y; Chen X; Wu N; Xu J; Zhang Z; Huang Y; Chen H; |
Address: | "College of Forestry, Northwest A&F University, Yangling, China. CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, China. Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry Administration, Beijing, China" |
ISSN/ISBN: | 1526-4998 (Electronic) 1526-498X (Linking) |
Abstract: | "BACKGROUND: The gene doublesex (dsx) plays pivotal roles in sex determination and controls sexually dimorphic development in certain insects. Importantly, it also displays a potential candidate target for pest management due to its sex-specific splicing. Therefore, we used CRISPR/Cas9-mediated gene disruption to investigate the function of dsx in Hyphantria cunea, an invasive forest pest. RESULT: In the present study, we identified the dsx gene from H. cunea which showed a sex-biased expression pattern that was different from other lepidopteran insects. Referring to sex-specific functional analyses in Bombyx mori, we performed a site-specific knockout of the Hcdsx gene by using a CRISPR/Cas9 system, which induced severe abnormalities in external genitalia and some incomplete sex reversal phenotypes, which in turn led to reduced sex-specific fecundity. An alternative splicing pattern of Hcdsx was altered by CRISPR/Cas9-induced mutation, and alterations in splicing affected expression of downstream genes encoding pheromone binding protein 1, vg1 and vg2 (encoding vitellogenin), which contributed to the sex-specific sterility phenotypes in the Hcdsx mutants. CONCLUSION: The Hcdsx gene plays important roles in sexual differentiation in H. cunea. Disruption of Hcdsx induced sex-specific sterility, demonstrating a potential application in control of this pest. (c) 2019 Society of Chemical Industry" |
Keywords: | Animals Bombyx Female Infertility Insect Proteins Male *Moths *Mutation CRISPR/Cas9 system Hyphantria cunea doubelsex pest management sex-specific sterility; |
Notes: | "MedlineLi, Xiaowei Liu, Qun Liu, Huihui Bi, Honglun Wang, Yaohui Chen, Xien Wu, Ningning Xu, Jun Zhang, Zhen Huang, Yongping Chen, Hui eng 31420103918/National Science Foundation of China/ 201504302/Special Fund for Forest Scientific Research in the Public Welfare/ XDB11010600/Strategic Priority Research Program of Chinese Academy of Sciences/ England 2019/11/22 Pest Manag Sci. 2020 May; 76(5):1673-1682. doi: 10.1002/ps.5687. Epub 2019 Dec 25" |