Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractSynthesis and biological activity of a photoaffinity-biotinylated pheromone-biosynthesis activating neuropeptide (PBAN) analog    Next AbstractPheromone biosynthesis activating neuropeptide (PBAN): regulatory role and mode of action »

Insect Mol Biol


Title:Spatial distribution and differential expression of the PBAN receptor in tissues of adult Helicoverpa spp. (Lepidoptera: Noctuidae)
Author(s):Rafaeli A; Bober R; Becker L; Choi MY; Fuerst EJ; Jurenka R;
Address:"Institute for Technology & Storage of Agricultural Products, Agriculture Research Organization, Volcani Center, Bet Dagan, Israel. vtada@volcani.agri.gov.il"
Journal Title:Insect Mol Biol
Year:2007
Volume:20070228
Issue:3
Page Number:287 - 293
DOI: 10.1111/j.1365-2583.2007.00725.x
ISSN/ISBN:0962-1075 (Print) 0962-1075 (Linking)
Abstract:"Pheromone-biosynthesis-activating neuropeptide (PBAN) regulates sex pheromone production in many female moths. PBAN-like peptides, with common FXPRLamide C-terminals are found in other insect groups where they have other functions. The ubiquity and multifunctional nature of the pyrokinin/PBAN family of peptides suggests that the PBAN receptor proteins could also be present in a variety of insect tissues with alternative functions from that of sex pheromone biosynthesis. Previously we showed the presence of the PBAN-R in Helicoverpa armigera at the protein level. In the present study we confirm the similarities between the two Helicoverpa species: armigera and zea by (1) demonstrating the presence of the receptor protein in Sf9 cells, cloned to express the HezPBAN receptor, as compared with the endogenous receptor protein, previously shown in H. armigera pheromone glands, and (2) by identifying the nucleotide sequence of the PBAN-R from mRNA of H. armigera pheromone glands. Sequences of the two Helicoverpa spp. are 98% identical with most changes taking place in the 3'-end. We demonstrate the spatial distribution of the PBAN receptor protein in membranes of H. armigera brain (Br), thoracic ganglion (TG) and ventral nerve cord (VNC). We also demonstrate the presence and differential expression of the PBAN receptor gene (using reverse transcription-polymerase chain reaction and reverse transcription-quantitative real-time polymerase chain reaction, respectively) in the neural tissues (Br, TG and VNC) of adult H. armigera female moths as compared with its presence in pheromone glands. Surprisingly, the gene for the PBAN receptor is also detected in the male tissue homologous to the female pheromone gland, the aedeagus, although the protein is undetectable and PBAN does not induce physiological (pheromone production) or cellular (cyclic-adenosine monophosphate production) responses in this tissue. Our findings indicate that PBAN or PBAN-like receptors are present in the neural tissues and may represent a neurotransmitter-like function for PBAN-like peptides. In addition, the surprising discovery of the presence of the gene encoding the PBAN receptor in the male homologous tissue, but its absence at the protein level, launches opportunities for studying molecular regulation pathways and the evolution of these G protein coupled receptors (GPCRs)"
Keywords:"Animals Base Sequence Cell Line DNA Primers/genetics Exocrine Glands/metabolism Female Male Molecular Sequence Data Moths/genetics/*metabolism Nervous System/metabolism Neuropeptides/*metabolism RNA, Messenger/*genetics Receptors, Neuropeptide/*genetics/*;"
Notes:"MedlineRafaeli, A Bober, R Becker, L Choi, M-Y Fuerst, E-J Jurenka, R eng Comparative Study Research Support, Non-U.S. Gov't England 2007/03/03 Insect Mol Biol. 2007 Jun; 16(3):287-93. doi: 10.1111/j.1365-2583.2007.00725.x. Epub 2007 Feb 28"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024