Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractInvolvement of SRE element of Ty1 transposon in TEC1-dependent transcriptional activation    Next AbstractThe calmodulin-binding transcription factor SIGNAL RESPONSIVE1 is a novel regulator of glucosinolate metabolism and herbivory tolerance in Arabidopsis »

Plant J


Title:The Arabidopsis extracellular UNUSUAL SERINE PROTEASE INHIBITOR functions in resistance to necrotrophic fungi and insect herbivory
Author(s):Laluk K; Mengiste T;
Address:"Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA"
Journal Title:Plant J
Year:2011
Volume:20110822
Issue:3
Page Number:480 - 494
DOI: 10.1111/j.1365-313X.2011.04702.x
ISSN/ISBN:1365-313X (Electronic) 0960-7412 (Linking)
Abstract:"Protease inhibitors (PIs) function in the precise regulation of proteases, and are thus involved in diverse biological processes in many organisms. Here, we studied the functions of the Arabidopsis UNUSUAL SERINE PROTEASE INHIBITOR (UPI) gene, which encodes an 8.8 kDa protein of atypical sequence relative to other PIs. Plants harboring a loss-of-function UPI allele displayed enhanced susceptibility to the necrotrophic fungi Botrytis cinerea and Alternaria brassicicola as well as the generalist herbivore Trichoplusia ni. Further, ectopic expression conferred increased resistance to B. cinerea and T. ni. In contrast, the mutant has wild-type responses to virulent, avirulent and non-pathogenic strains of Pseudomonas syringae, thus limiting the defense function of UPI to necrotrophic fungal infection and insect herbivory. Expression of UPI is significantly induced by jasmonate, salicylic acid and abscisic acid, but is repressed by ethylene, indicating complex phytohormone regulation of UPI expression. The upi mutant also shows significantly delayed flowering, associated with decreased SOC1 expression and elevated levels of MAF1, two regulators of floral transition. Recombinant UPI strongly inhibits the serine protease chymotrypsin but also weakly blocks the cysteine protease papain. Interestingly, jasmonate induces intra- and extracellular UPI accumulation, suggesting a possible role in intercellular or extracellular functions. Overall, our results show that UPI is a dual-specificity PI that functions in plant growth and defense, probably through the regulation of endogenous proteases and/or those of biotic invaders"
Keywords:Abscisic Acid/pharmacology Alternaria/*pathogenicity Amino Acid Sequence Animals Arabidopsis/genetics/immunology/metabolism/*physiology Arabidopsis Proteins/genetics/*metabolism Botrytis/*pathogenicity Cyclopentanes/pharmacology Disease Resistance Ethylen;
Notes:"MedlineLaluk, Kristin Mengiste, Tesfaye eng Research Support, U.S. Gov't, Non-P.H.S. England 2011/07/14 Plant J. 2011 Nov; 68(3):480-94. doi: 10.1111/j.1365-313X.2011.04702.x. Epub 2011 Aug 22"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 22-11-2024