Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract"Aggregation pheromone of the Qinghai spruce bark beetle, Ips nitidus eggers"    Next AbstractA novel full recycling process through two-stage anaerobic treatment of distillery wastewater for bioethanol production from cassava »

PLoS One


Title:Inhibition of predator attraction to kairomones by non-host plant volatiles for herbivores: a bypass-trophic signal
Author(s):Zhang QH; Schlyter F;
Address:"Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden"
Journal Title:PLoS One
Year:2010
Volume:20100610
Issue:6
Page Number:e11063 -
DOI: 10.1371/journal.pone.0011063
ISSN/ISBN:1932-6203 (Electronic) 1932-6203 (Linking)
Abstract:"BACKGROUND: Insect predators and parasitoids exploit attractive chemical signals from lower trophic levels as kairomones to locate their herbivore prey and hosts. We hypothesized that specific chemical cues from prey non-hosts and non-habitats, which are not part of the trophic chain, are also recognized by predators and would inhibit attraction to the host/prey kairomone signals. To test our hypothesis, we studied the olfactory physiology and behavior of a predaceous beetle, Thanasimus formicarius (L.) (Coleoptera: Cleridae), in relation to specific angiosperm plant volatiles, which are non-host volatiles (NHV) for its conifer-feeding bark beetle prey. METHODOLOGY/PRINCIPAL FINDINGS: Olfactory detection in the clerid was confirmed by gas chromatography coupled to electroantennographic detection (GC-EAD) for a subset of NHV components. Among NHV, we identified two strongly antennally active molecules, 3-octanol and 1-octen-3-ol. We tested the potential inhibition of the combination of these two NHV on the walking and flight responses of the clerid to known kairomonal attractants such as synthetic mixtures of bark beetle (Ips spp.) aggregation pheromone components (cis-verbenol, ipsdienol, and E-myrcenol) combined with conifer (Picea and Pinus spp.) monoterpenes (alpha-pinene, terpinolene, and Delta(3)-carene). There was a strong inhibitory effect, both in the laboratory (effect size d = -3.2, walking bioassay) and in the field (d = -1.0, flight trapping). This is the first report of combining antennal detection (GC-EAD) and behavioral responses to identify semiochemical molecules that bypass the trophic system, signaling habitat information rather than food related information. CONCLUSIONS/SIGNIFICANCE: Our results, along with recent reports on hymenopteran parasitoids and coleopteran predators, suggest that some NHV chemicals for herbivores are part of specific behavioral signals for the higher trophic level and not part of a background noise. Such bypass-trophic signals could be of general importance for third trophic level players in avoiding unsuitable habitats with non-host plants of their prey"
Keywords:"Animals Biological Assay Chromatography, Gas Humans Pheromones/*physiology Plants/*metabolism *Predatory Behavior;"
Notes:"MedlineZhang, Qing-He Schlyter, Fredrik eng Research Support, Non-U.S. Gov't 2010/06/16 PLoS One. 2010 Jun 10; 5(6):e11063. doi: 10.1371/journal.pone.0011063"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 05-12-2024