Title: | Recent advances in surface and interface design of photocatalysts for the degradation of volatile organic compounds |
Address: | "College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China. College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China; School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China. Electronic address: lifatang@hebust.edu.cn" |
Journal Title: | Adv Colloid Interface Sci |
DOI: | 10.1016/j.cis.2020.102275 |
ISSN/ISBN: | 1873-3727 (Electronic) 0001-8686 (Linking) |
Abstract: | "Photocatalysis has attracted wide attention in eliminating volatile organic compounds (VOCs). This paper pays attention to the relationship between structure and performance of photocatalysts based on the fact that catalytic reactions arise on the surface of catalysts and the interface structure of photocatalysts plays key role in transfer efficiency of charges carriers. This review summarizes various surface/interface designs including unsaturated coordination such as oxygen vacancies, surface halogenations, and heterojunctions, homojunctions, facets, etc., as well as the application in photocatalytic degradation of VOCs. This paper reviews the influence of surface and interface properties of materials on VOCs molecules, effective strategies to promote the decomposition of VOCs from the perspectives of VOCs activation, reaction barrier etc., and presents various methods of photocatalyst design appropriately. The degradation path of highly toxic benzene VOCs are also summarized. In addition, the possible problems and suggestions for photocatalytic degradation of VOCs are proposed" |
Keywords: | Charge transfer Photocatalysis Reaction route Surface and interface Volatile organic compounds; |
Notes: | "PubMed-not-MEDLINELi, Qi Li, Fa-Tang eng Review Netherlands 2020/09/29 Adv Colloid Interface Sci. 2020 Oct; 284:102275. doi: 10.1016/j.cis.2020.102275. Epub 2020 Sep 22" |