Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractStructure and Properties of Heterometallics Based on Lanthanides and Transition Metals with Methoxy-beta-Diketonates    Next Abstract"Temperature-dependent spectral density analysis applied to monitoring backbone dynamics of major urinary protein-I complexed with the pheromone 2- sec-butyl-4,5-dihydrothiazole" »

Molecules


Title:Volatilome of Chill-Stored European Seabass (Dicentrarchus labrax) Fillets and Atlantic Salmon (Salmo salar) Slices under Modified Atmosphere Packaging
Author(s):Kritikos A; Aska I; Ekonomou S; Mallouchos A; Parlapani FF; Haroutounian SA; Boziaris IS;
Address:"Laboratory of Marketing and Technology of Aquatic Products and Foods, Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fitoko Street, 38446 Volos, Greece. Laboratory of Food Chemistry and Analysis, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece. Department of Animal Science and Aquaculture, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece"
Journal Title:Molecules
Year:2020
Volume:20200423
Issue:8
Page Number: -
DOI: 10.3390/molecules25081981
ISSN/ISBN:1420-3049 (Electronic) 1420-3049 (Linking)
Abstract:"Fish spoilage occurs due to production of metabolites during storage, from bacterial action and chemical reactions, which leads to sensory rejection. Investigating the volatilome profile can reveal the potential spoilage markers. The evolution of volatile organic molecules during storage of European seabass (Dicentrarchus labrax) fillets and Atlantic salmon (Salmo salar) slices under modified atmosphere packaging at 2 degrees C was recorded by solid-phase microextraction combined with gas chromatography-mass spectrometry. Total volatile basic nitrogen (TVB-N), microbiological, and sensory changes were also monitored. The shelf life of seabass fillets and salmon slices was 10.5 days. Pseudomonas and H(2)S-producing bacteria were the dominant microorganisms in both fish. TVB-N increased from the middle of storage, but never reached concentrations higher than the regulatory limit of 30-35 mg N/100 g. The volatilome consisted of a number of aldehydes, ketones, alcohols and esters, common to both fish species. However, different evolution patterns were observed, indicating the effect of fish substrate on microbial growth and eventually the generation of volatiles. The compounds 3-hydroxy-2-butanone, 2,3-butanediol, 2,3-butanedione and acetic acid could be proposed as potential spoilage markers. The identification and quantification of the volatilities of specific fish species via the development of a database with the fingerprint of fish species stored under certain storage conditions can help towards rapid spoilage assessment"
Keywords:Animals *Bass Fish Products/*analysis Food Analysis Food Microbiology *Food Packaging *Food Preservation Food Quality Food Storage Gas Chromatography-Mass Spectrometry *Refrigeration *Salmo salar Volatile Organic Compounds/analysis fish modified atmospher;
Notes:"MedlineKritikos, Athanasios Aska, Ioanna Ekonomou, Sotirios Mallouchos, Athanasios Parlapani, Foteini F Haroutounian, Serkos A Boziaris, Ioannis S eng Switzerland 2020/04/29 Molecules. 2020 Apr 23; 25(8):1981. doi: 10.3390/molecules25081981"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 29-06-2024