Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractSuppression of the phenolic SOA formation in the presence of electrolytic inorganic seed    Next AbstractTransfer of tetracycline resistance genes with aggregation substance in food-borne Enterococcus faecalis »

ACS Nano


Title:Simple Approach to Enhance Long-Term Environmental Stability of MXene Using Initiated Chemical Vapor Deposition Surface Coating
Author(s):Choi J; Oh MS; Cho A; Ryu J; Kim YJ; Kang H; Cho SY; Im SG; Kim SJ; Jung HT;
Address:"Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea. Interface Materials and Chemical Engineering Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea. School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea. Materials Architecturing Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea. Division of Nanoscience and Technology, KIST School, University of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea. Convergence Research Center for Solutions to Electromagnetic Interference in Future-mobility, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea"
Journal Title:ACS Nano
Year:2023
Volume:20230524
Issue:11
Page Number:10898 - 10905
DOI: 10.1021/acsnano.3c02668
ISSN/ISBN:1936-086X (Electronic) 1936-0851 (Linking)
Abstract:"Developing a methodology to enhance long-term stability is one of the most important issues in MXene research, since they are prone to oxidation in the ambient environment. Although various approaches have been suggested to improve the stability of MXene, they have suffered from complicated processes and limited applicability to various types of MXene nanostructures. Herein, we report a simple and versatile technique to enhance the environmental stability of MXenes. Ti(3)C(2)T(x) MXene films were decorated with a highly hydrophobic polymer, 1H,1H,2H,2H-perfluorodecyl methacrylate (PFDMA), using initiated chemical vapor deposition (iCVD) where iCVD allows the facile postdeposition of polymer films of desired thickness on MXene films. The oxidation resistance was evaluated by fabricating MXene gas sensors and measuring the change in signal-to-noise ratio (SNR) of volatile organic compound (VOC) gases under harsh conditions (RH 100% at 50 degrees C) for several weeks where the performance in the absence and presence of PFDMA was compared. The results show that while the SNR of PFDMA-Ti(3)C(2)T(x) sensors was retained, a dramatic increase of the noise level and a decrease in the SNR were observed in pristine Ti(3)C(2)T(x). We believe that this simple and nondestructive method will offer great potential to enhance the stability of a wide range of MXenes"
Keywords:2D materials Gas sensors MXene Stability Ti3C2Tx iCVD;
Notes:"PubMed-not-MEDLINEChoi, Junghoon Oh, Myung Seok Cho, Ahyeon Ryu, Jin Kim, Yong-Jae Kang, Hohyung Cho, Soo-Yeon Im, Sung Gap Kim, Seon Joon Jung, Hee-Tae eng 2023/05/24 ACS Nano. 2023 Jun 13; 17(11):10898-10905. doi: 10.1021/acsnano.3c02668. Epub 2023 May 24"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 13-01-2025