Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractIdentification of the Trail Pheromone of the Pavement Ant Tetramorium immigrans (Hymenoptera: Formicidae)    Next Abstract"A dual, catalytic role for the fission yeast Ccr4-Not complex in gene silencing and heterochromatin spreading" »

J Geophys Res Atmos


Title:Constraining Emissions of Volatile Organic Compounds Over the Indian Subcontinent Using Space-Based Formaldehyde Measurements
Author(s):Chaliyakunnel S; Millet DB; Chen X;
Address:"Department of Soil, Water, and Climate, University of Minnesota, Twin Cities, St. Paul, MN, USA"
Journal Title:J Geophys Res Atmos
Year:2019
Volume:20190830
Issue:19
Page Number:10525 - 10545
DOI: 10.1029/2019jd031262
ISSN/ISBN:2169-897X (Print) 2169-8996 (Electronic) 2169-897X (Linking)
Abstract:"India is an air pollution mortality hot spot, but regional emissions are poorly understood. We present a high-resolution nested chemical transport model (GEOS-Chem) simulation for the Indian subcontinent and use it to interpret formaldehyde (HCHO) observations from two satellite sensors (OMI and GOME-2A) in terms of constraints on regional volatile organic compound (VOC) emissions. We find modeled biogenic VOC emissions to be overestimated by ~30-60% for most locations and seasons, and derive a best estimate biogenic flux of 16 Tg C/year subcontinent-wide for year 2009. Terrestrial vegetation provides approximately half the total VOC flux in our base-case inversions (full uncertainty range: 44-65%). This differs from prior understanding, in which biogenic emissions represent >70% of the total. Our derived anthropogenic VOC emissions increase slightly (13-16% in the base case, for a subcontinent total of 15 Tg C/year in 2009) over RETRO year 2000 values, with some larger regional discrepancies. The optimized anthropogenic emissions agree well with the more recent CEDS inventory, both subcontinent-wide (within 2%) and regionally. An exception is the Indo-Gangetic Plain, where we find an underestimate for both RETRO and CEDS. Anthropogenic emissions thus constitute 37-50% of the annual regional VOC source in our base-case inversions and exceed biogenic emissions over the Indo-Gangetic Plain, West India, and South India, and over the entire subcontinent during winter and post-monsoon. Fires are a minor fraction (<7%) of the total regional VOC source in the prior and optimized model. However, evidence suggests that VOC emissions in the fire inventory used here (GFEDv4) are too low over the Indian subcontinent"
Keywords:
Notes:"PubMed-not-MEDLINEChaliyakunnel, Sreelekha Millet, Dylan B Chen, Xin eng NNX14AP89G/NASA/NASA/ 2019/10/16 J Geophys Res Atmos. 2019 Oct 16; 124(19):10525-10545. doi: 10.1029/2019jd031262. Epub 2019 Aug 30"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 19-12-2024