Title: | Involvement of a specific chemosensory protein from Bactrocera dorsalis in perceiving host plant volatiles |
Author(s): | Yi X; Wang P; Wang Z; Cai J; Hu M; Zhong G; |
Address: | "Laboratory of Insect Toxicology, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, People's Republic of China" |
DOI: | 10.1007/s10886-014-0406-4 |
ISSN/ISBN: | 1573-1561 (Electronic) 0098-0331 (Linking) |
Abstract: | "Insects have evolved many physiological and behavioral adaptations to recognize external complex chemicals. Olfaction plays an important role in perceiving volatile chemicals, utilizing them to locate host sites, conspecifics, and enemies. Chemosensory proteins (CSPs) are present in high concentrations within the sensory sensilla of insects and are endowed with a heterogeneous range of functions. However, direct evidence for the involvement of CSPs in olfactory function is still lacking. In this study, a fluorescence-based ligand binding assay using Bdor-CSP2 illustrated its ability to bind the majority of the selected ligands of different shapes and chemical structures that are ecologically significant, host plant volatiles of Bactrocera dorsalis. RNAi-mediated silencing coupled with electrophysiological tests showed lower electrophysiological responses to (3Z)-hex-3-en-1-ol, trans-2-hexenal, 6-methylhept-5-en-2-one, and 3-methylbutyl acetate in dsBdor CSP2 treated flies compared with the untreated controls. The reduced expression of Bdor-CSP2 by RNA interference was confirmed by semi-quantitative PCR, real-time quantitative PCR and Western blot, which suggested the RNAi-treatment was responsible for the observed reduction of antennal responses in EAG recordings. These data suggest that the expression of Bdor-CSP2 is necessary for the recognition of antennal responses to some plant host volatiles by B. dorsalis" |
Keywords: | "Animals Behavior, Animal/drug effects Electrophysiology Fluorescent Dyes/chemistry Insect Proteins/antagonists & inhibitors/genetics/*metabolism Ligands Plants/*chemistry/metabolism Protein Binding RNA Interference RNA, Double-Stranded/pharmacology Recomb;" |
Notes: | "MedlineYi, Xin Wang, Peidan Wang, Zheng Cai, Jun Hu, Meiying Zhong, Guohua eng Research Support, Non-U.S. Gov't Retracted Publication 2014/03/15 J Chem Ecol. 2014 Mar; 40(3):267-75. doi: 10.1007/s10886-014-0406-4. Epub 2014 Mar 14" |