Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractHuman exposure to metals in consumer-focused fused filament fabrication (FFF)/ 3D printing processes    Next Abstract"Identification and bioactivity of alarm pheromone in the western flower thrips,Frankliniella occidentalis" »

Insect Biochem Mol Biol


Title:A fatty acyl-CoA reductase highly expressed in the head of honey bee (Apis mellifera) involves biosynthesis of a wide range of aliphatic fatty alcohols
Author(s):Teerawanichpan P; Robertson AJ; Qiu X;
Address:"Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon SK S7N 5A8, Canada"
Journal Title:Insect Biochem Mol Biol
Year:2010
Volume:20100611
Issue:9
Page Number:641 - 649
DOI: 10.1016/j.ibmb.2010.06.004
ISSN/ISBN:1879-0240 (Electronic) 0965-1748 (Linking)
Abstract:"Honey bees (Apis mellifera) are social insects which have remarkable complexity in communication pheromones. These chemical signals comprise a mixture of hydrocarbons, wax esters, fatty acids, aldehydes and alcohols. In this study, we detected several long chain aliphatic alcohols ranging from C18-C32 in honey bees and the level of these alcohols varied in each body segment. C18:0Alc and C20:0Alc are more pronounced in the head, whereas C22:0Alc to C32Alc are abundant in the abdomen. One of the cDNAs coding for a fatty acyl-CoA reductase (AmFAR1) involved in the synthesis of fatty alcohols was isolated and characterized. AmFAR1 was ubiquitously expressed in all body segments with the predominance in the head of honey bees. Heterologous expression of AmFAR1 in yeast revealed that AmFAR1 could convert a wide range of fatty acids (14:0-22:0) to their corresponding alcohols, with stearic acid 18:0 as the most preferred substrate. The substrate preference and the expression pattern of AmFAR1 were correlated with the level of total fatty alcohols in bees. Reconstitution of the wax biosynthetic pathway by heterologous expression of AmFAR1, together with Euglena wax synthase led to the high level production of medium to long chain wax monoesters in yeast"
Keywords:"Aldehyde Oxidoreductases/chemistry/*metabolism Animals Bees/*enzymology/metabolism Fatty Alcohols/chemistry/*metabolism Head Insect Proteins/chemistry/*metabolism Phylogeny Sequence Alignment Sequence Analysis, Protein;"
Notes:"MedlineTeerawanichpan, Prapapan Robertson, Albert J Qiu, Xiao eng England 2010/06/15 Insect Biochem Mol Biol. 2010 Sep; 40(9):641-9. doi: 10.1016/j.ibmb.2010.06.004. Epub 2010 Jun 11"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 26-12-2024