Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractGiant and Very Large Intracranial Aneurysms: Surgical Strategies and Special Issues    Next AbstractDetermination of nine volatile N-nitrosamines in tobacco and smokeless tobacco products by dispersive solid-phase extraction with gas chromatography and tandem mass spectrometry »

Chemosphere


Title:A dual-functional hydrogel for efficient water purification: Integrating solar interfacial evaporation with fenton reaction
Author(s):Lv B; Peng Y; Zhao B; Xu Y; Song C; Liu Y; Fan X;
Address:"Marine Engineering College, Dalian Maritime University, Dalian, 116026, China; College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China. College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China. Marine Engineering College, Dalian Maritime University, Dalian, 116026, China. Electronic address: zhaobg2008@163.com. Centre for Ports and Maritime Safety, Dalian Maritime University, Dalian, 116026, China. Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China. College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China. Electronic address: fxf0909@dlmu.edu.cn"
Journal Title:Chemosphere
Year:2023
Volume:20230622
Issue:
Page Number:139310 -
DOI: 10.1016/j.chemosphere.2023.139310
ISSN/ISBN:1879-1298 (Electronic) 0045-6535 (Linking)
Abstract:"Solar interfacial evaporation is a potential technology to produce clean water due to its simplicity and being driven by renewable clean energy, but it still requires further development to break through the bottleneck of removing volatile organic compounds (VOCs), especially in wastewater treatment. Herein, we proposed a dual-functional hydrogel evaporator that coupled solar interfacial evaporation with Fenton reaction to simultaneously remove VOCs and non-volatile pollutants from water with low energy consumption and high efficiency. The evaporator was composed with beta-FeOOH and polydopamine (PDA) on an electrospun nanofibrous hydrogel. Arising from the PDA with excellent photothermal properties, the evaporator revealed a high light absorption characteristics ( approximately 90%) and photothermal efficiency (83.4%), which ensured a favorable evaporation rate of 1.70 kg m(-2) h(-1) under one solar irradiation. More importantly, benefited from the coupled Fenton reaction, the VOCs removal rate of beta-FeOOH@PDA/polyvinyl alcohol nanofibrous hydrogel (beta-FeOOH@PPNH) reached 95.8%, which was 6.5 times than that of sole solar interfacial evaporation (14.8%). In addition, the evaporator exhibited an outstanding non-volatile pollutant removal capability and stable removal performance for organic pollutants over a long period of operation. The prepared beta-FeOOH@PPNH evaporator provides a promising idea for simultaneous removal of non-volatile pollutants and volatile pollutants performance in long-term water purification"
Keywords:Hydrogels Physical Phenomena *Environmental Pollutants *Volatile Organic Compounds Water *Water Purification Fenton reaction Nanofibrous hydrogel Solar interfacial evaporation Volatile organic compounds Water purification.;
Notes:"MedlineLv, Bowen Peng, Yanling Zhao, Baogang Xu, Yuanlu Song, Chengwen Liu, Yanming Fan, Xinfei eng England 2023/06/25 Chemosphere. 2023 Sep; 336:139310. doi: 10.1016/j.chemosphere.2023.139310. Epub 2023 Jun 22"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 18-06-2024