Title: | Diverse response of surface ozone to COVID-19 lockdown in China |
Author(s): | Liu Y; Wang T; Stavrakou T; Elguindi N; Doumbia T; Granier C; Bouarar I; Gaubert B; Brasseur GP; |
Address: | "Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China. Electronic address: liuym88@mail.sysu.edu.cn. Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China. Electronic address: cetwang@polyu.edu.hk. Royal Belgian Institute for Space Aeronomy, Brussels, Belgium. Laboratoire d'Aerologie, Toulouse, France. Laboratoire d'Aerologie, Toulouse, France; NOAA Chemical Sciences Laboratory and CIRES, University of Colorado, Boulder, CO, USA. Environmental Modeling Group, Max Planck Institute for Meteorology, Hamburg, Germany. Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO, USA. Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China; Environmental Modeling Group, Max Planck Institute for Meteorology, Hamburg, Germany; Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO, USA" |
DOI: | 10.1016/j.scitotenv.2021.147739 |
ISSN/ISBN: | 1879-1026 (Electronic) 0048-9697 (Print) 0048-9697 (Linking) |
Abstract: | "Ozone (O(3)) is a key oxidant and pollutant in the lower atmosphere. Significant increases in surface O(3) have been reported in many cities during the COVID-19 lockdown. Here we conduct comprehensive observation and modeling analyses of surface O(3) across China for periods before and during the lockdown. We find that daytime O(3) decreased in the subtropical south, in contrast to increases in most other regions. Meteorological changes and emission reductions both contributed to the O(3) changes, with a larger impact from the former especially in central China. The plunge in nitrogen oxide (NO(x)) emission contributed to O(3) increases in populated regions, whereas the reduction in volatile organic compounds (VOC) contributed to O(3) decreases across the country. Due to a decreasing level of NO(x) saturation from north to south, the emission reduction in NO(x) (46%) and VOC (32%) contributed to net O(3) increases in north China; the opposite effects of NO(x) decrease (49%) and VOC decrease (24%) balanced out in central China, whereas the comparable decreases (45-55%) in these two precursors contributed to net O(3) declines in south China. Our study highlights the complex dependence of O(3) on its precursors and the importance of meteorology in the short-term O(3) variability" |
Keywords: | Covid-19 Emission reduction Meteorological condition Surface ozone; |
Notes: | "PublisherLiu, Yiming Wang, Tao Stavrakou, Trissevgeni Elguindi, Nellie Doumbia, Thierno Granier, Claire Bouarar, Idir Gaubert, Benjamin Brasseur, Guy P eng Netherlands 2021/07/30 Sci Total Environ. 2021 May 15; 789:147739. doi: 10.1016/j.scitotenv.2021.147739" |