Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractPhysicochemical and morphological characterisation of nanoparticles from photocopiers: implications for environmental health    Next AbstractSelected ion flow tube mass spectrometry for targeted analysis of volatile organic compounds in human breath »

Sci Total Environ


Title:Phototactic behaviour and neurotransmitter profiles in two Daphnia magna clones: Vertical and horizontal responses to fish kairomones and psychotropic drugs
Author(s):Bellot M; Gomez-Canela C; Barata C;
Address:"Department of Analytical and Applied Chemistry (Chromatography Section), School of Engineering, Institut Quimic de Sarria-Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain; Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain. Electronic address: marina.bellot@iqs.url.edu. Department of Analytical and Applied Chemistry (Chromatography Section), School of Engineering, Institut Quimic de Sarria-Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain. Electronic address: cristian.gomez@iqs.url.edu. Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain. Electronic address: carlos.barata@idaea.csic.es"
Journal Title:Sci Total Environ
Year:2022
Volume:20220318
Issue:
Page Number:154684 -
DOI: 10.1016/j.scitotenv.2022.154684
ISSN/ISBN:1879-1026 (Electronic) 0048-9697 (Linking)
Abstract:"Animal behavioural responses are increasingly being used in environmental risk assessment. Nevertheless, behavioural responses are still hampered by a lack of standardisation. Phototactic behaviour in zooplankton and in particular in Daphnia has often been associated to vertical migration but there is also 'shore-avoidance' horizontal behaviour: Daphnia uses shades along the shore to swim either to or away from the shore and predators. Previously, we develop a vertical oriented behavioural hardware able to reproduce phototactic fish induced depth selection in Daphnia magna, its modulation by fish kairomones and psychotropic drugs and the neurotransmitter profiles associated to those responses. This study aims to test if it is possible to use an horizontal 24 multi-well plate maze set up to assess phototactic fish induced responses in D. magna. The study was conducted using two clones with opposed phototaxis upon exposure to fish kairomones and using psychotropic drugs known to modulate phototaxis. Acrylic strips opaque to visible light but not to the infrared one were used to cover half of the arena of each of the wells of the multi-well plate. Clone P(1)32,85 showed positive phototaxis in either the vertical and horizontal set up and negative phototaxis when exposed to fish kairomones or to the muscarinic acetylcholine receptor antagonist's scopolamine and atropine. The opposite behaviour was observed for clone F. Diazepam and pilocarpine ameliorate fish kairomone induced negative phototaxis and picrotoxin increased it only in clone P(1)32,85 in the vertical set up. The determination of neurotransmitters showed much greater concentrations of dopamine and of glycine in clone F, which may be relate to its negative phototaxis and its observed lower responsiveness to fish kairomones. The results from this study suggest a simple, fast, and high throughput phototactic behaviour assay for D. magna that can be easily adapted to other species"
Keywords:Animals Clone Cells *Daphnia Fishes Neurotransmitter Agents/pharmacology Pheromones/pharmacology *Phototaxis Psychotropic Drugs/toxicity Behaviour Daphnia Ecotoxicology Fish kairomones Phototaxis Psychotropic;
Notes:"MedlineBellot, Marina Gomez-Canela, Cristian Barata, Carlos eng Netherlands 2022/03/23 Sci Total Environ. 2022 Jul 15; 830:154684. doi: 10.1016/j.scitotenv.2022.154684. Epub 2022 Mar 18"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 24-12-2024