Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract"Associations of Cognitive Function Scores with Carbon Dioxide, Ventilation, and Volatile Organic Compound Exposures in Office Workers: A Controlled Exposure Study of Green and Conventional Office Environments"    Next AbstractIsolation of the components of a complex mixture by means of column switching for their enhanced detection by mass spectrometry »

Environ Sci Pollut Res Int


Title:Impairment of benthic diatom adhesion and photosynthetic activity by allelopathic compounds from a green alga: involvement of free fatty acids?
Author(s):Allen JL; Ten-Hage L; Leflaive J;
Address:"Universite de Toulouse, INP, UPS, EcoLab (Laboratoire d'Ecologie Fonctionnelle et Environnement), 118 Route de Narbonne, 31062, Toulouse, France"
Journal Title:Environ Sci Pollut Res Int
Year:2015
Volume:20141129
Issue:18
Page Number:13669 - 13680
DOI: 10.1007/s11356-014-3873-9
ISSN/ISBN:1614-7499 (Electronic) 0944-1344 (Linking)
Abstract:"The role of chemical interactions in shaping microbial communities has raised increasing interest over the last decade. Many benthic microorganisms are known to develop chemical strategies to overcome competitors, but the real importance of chemical interactions within freshwater biofilm remains unknown. This study focused on the biological and chemical mechanisms of an interaction involving two benthic microorganisms, an allelopathic filamentous green alga, Uronema confervicolum, and a common diatom, Fistulifera saprophila. Our results showed that functions critical for benthic phototrophic microorganisms were inhibited by U. confervicolum extracts. Growth, cell motility, adhesion, and photosynthetic activity were impaired at extract concentrations ranging between 5 and 20 mug ml(-1). The adhesion inhibition was mediated by intracellular nitric oxide (NO) induction. A bioassay-guided fractionation of the extract with HPLC helped to identify two C18 fatty acids present in the growth-inhibiting fractions: linoleic (LA) and alpha-linolenic (LNA) acids. These compounds represented 77% of the total free fatty acids of U. confervicolum and were present in the culture medium (1.45 mug l(-1) in total). Both could inhibit the diatom growth at concentrations higher than 0.25 mug ml(-1), but had no effect on cell adhesion. The discrepancy between the effective concentrations of fatty acids and the concentration found in culture medium may be explained by the presence of high-concentration microenvironments. The compounds involved in adhesion inhibition remain to be identified. Though further experiments with complex biofilms are needed, our results suggest that U. confervicolum may participate to the control of biofilm composition by inhibiting diatom adhesion"
Keywords:"Cell Adhesion Chlorophyta/chemistry Diatoms/drug effects/*physiology Fatty Acids, Nonesterified Pheromones/pharmacology Photosynthesis;"
Notes:"MedlineAllen, Joey L Ten-Hage, Loic Leflaive, Josephine eng Research Support, Non-U.S. Gov't Germany 2014/11/29 Environ Sci Pollut Res Int. 2015 Sep; 22(18):13669-80. doi: 10.1007/s11356-014-3873-9. Epub 2014 Nov 29"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 29-12-2024