Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractUnraveling the contribution of pre-salting duration to microbial succession and changes of volatile and non-volatile organic compounds in Suancai (a Chinese traditional fermented vegetable) during fermentation    Next AbstractSilencing of cytochrome P450 gene CYP321A1 effects tannin detoxification and metabolism in Spodoptera litura »

AMB Express


Title:Volatile organic compounds (VOCs) from Bacillus subtilis CF-3 reduce anthracnose and elicit active defense responses in harvested litchi fruits
Author(s):Zhao P; Li P; Wu S; Zhou M; Zhi R; Gao H;
Address:"School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China. School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China. School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China. zhirc@ustb.edu.cn. School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China. hygao1111@126.com"
Journal Title:AMB Express
Year:2019
Volume:20190727
Issue:1
Page Number:119 -
DOI: 10.1186/s13568-019-0841-2
ISSN/ISBN:2191-0855 (Print) 2191-0855 (Electronic) 2191-0855 (Linking)
Abstract:"In this study, we investigated the effects of volatile organic compounds (VOCs) produced by Bacillus subtilis CF-3 on the growth and development of Colletotrichum gloeosporioides and evaluated the elicitation of active defense responses in harvested litchi fruits. In vitro experiments were conducted to explore the bacteriostatic effect of VOCs in inhibiting pathogenic fungi by means of plate enthalpy test, scanning electron microscopy, transmission electron microscopy, and gas chromatography-mass spectrometry (GC-MS). The results showed that 2,4-di-tert-butylphenol and CF-3 24-h fermentation broth (24hFB) can significantly inhibit the germination of fungal spores, disrupt hyphal and cell morphology, and decrease cell membrane fluidity and integrity, resulting in the changes of indexes. In addition, the bacteriostasis of VOCs in the defensive ability of litchi fruits to C. gloeosporioides was studied, and it was shown that 2,4-di-tert-butylphenol and CF-3 24hFB can inhibit the activity of the pathogenic enzymes (pectinase and cellulase) secreted by C. gloeosporioides to reduce the decomposition of plant tissues, activate antioxidant enzymes (peroxidase, polyphenol oxidase, catalase, and superoxide dismutase) in the fruit to eliminate excessive reactive oxygen species in fruits in order to reduce plant cell damage and activate disease resistance enzymes (phenylalanineammonialyase, chitinases, beta-1,3-glucanase) to enhance the resistance of litchi fruits to C. gloeosporioides and inhibit its growth. This study investigated the bacteriostasis of VOCs in inhibiting C. gloeosporioides and inducing the resistance of litchi fruits, providing a theoretical basis for future applications"
Keywords:Antibacterial effect B.subtilis CF-3 VOCs C.gloeosporioides Litchi fruit;
Notes:"PubMed-not-MEDLINEZhao, Pengyu Li, Peizhong Wu, Shiyuan Zhou, Minshun Zhi, Ruicong Gao, Haiyan eng No. 18391901300/Shanghai Science and Technology Commission of China/ Germany 2019/07/29 AMB Express. 2019 Jul 27; 9(1):119. doi: 10.1186/s13568-019-0841-2"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 08-01-2025