Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract"[Quantitative determination of seven major absorbed volatile constituents in mice brain, liver and blood after intragastric administration of Asari Radix et Rhizoma suspension by headspace-solid phase microextraction-gas chromatography-mass spectrometry]"    Next AbstractQuantifying the effect of organic aerosol aging and intermediate-volatility emissions on regional-scale aerosol pollution in China »

Proc Natl Acad Sci U S A


Title:Reconstitution of the S. aureus agr quorum sensing pathway reveals a direct role for the integral membrane protease MroQ in pheromone biosynthesis
Author(s):Zhao A; Bodine SP; Xie Q; Wang B; Ram G; Novick RP; Muir TW;
Address:"Department of Chemistry, Princeton University, Princeton, NJ 08544. Skirball Institute, Department of Microbiology, NYU Medical Center, New York, NY 10016"
Journal Title:Proc Natl Acad Sci U S A
Year:2022
Volume:20220808
Issue:33
Page Number:e2202661119 -
DOI: 10.1073/pnas.2202661119
ISSN/ISBN:1091-6490 (Electronic) 0027-8424 (Print) 0027-8424 (Linking)
Abstract:"In Staphylococcus aureus, virulence is under the control of a quorum sensing (QS) circuit encoded in the accessory gene regulator (agr) genomic locus. Key to this pathogenic behavior is the production and signaling activity of a secreted pheromone, the autoinducing peptide (AIP), generated following the ribosomal synthesis and posttranslational modification of a precursor polypeptide, AgrD, through two discrete cleavage steps. The integral membrane protease AgrB is known to catalyze the first processing event, generating the AIP biosynthetic intermediate, AgrD (1-32) thiolactone. However, the identity of the second protease in this biosynthetic pathway, which removes an N-terminal leader sequence, has remained ambiguous. Here, we show that membrane protease regulator of agr QS (MroQ), an integral membrane protease recently implicated in the agr response, is directly involved in AIP production. Genetic complementation and biochemical experiments reveal that MroQ proteolytic activity is required for AIP biosynthesis in agr specificity group I and group II, but not group III. Notably, as part of this effort, the biosynthesis and AIP-sensing arms of the QS circuit were reconstituted together in vitro. Our experiments also reveal the molecular features guiding MroQ cleavage activity, a critical factor in defining agr specificity group identity. Collectively, our study adds to the molecular understanding of the agr response and Staphylococcus aureus virulence"
Keywords:*Bacterial Proteins/genetics/metabolism/physiology *Membrane Proteins/physiology *Peptide Hydrolases/genetics/physiology *Pheromones/biosynthesis *Quorum Sensing/genetics *Staphylococcus aureus/pathogenicity *Trans-Activators/genetics/metabolism Virulence;
Notes:"MedlineZhao, Aishan Bodine, Steven P Xie, Qian Wang, Boyuan Ram, Geeta Novick, Richard P Muir, Tom W eng R01 AI042783/AI/NIAID NIH HHS/ AI042783/HHS | National Institutes of Health (NIH)/ Research Support, N.I.H., Extramural 2022/08/09 Proc Natl Acad Sci U S A. 2022 Aug 16; 119(33):e2202661119. doi: 10.1073/pnas.2202661119. Epub 2022 Aug 8"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 04-01-2025