Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractSelecting Cooking Methods to Decrease Persistent Organic Pollutant Concentrations in Food of Animal Origin Using a Consensus Decision-Making Model    Next Abstract"Pre-infestation of Tomato Plants by Aphids Modulates Transmission-Acquisition Relationship among Whiteflies, Tomato Yellow Leaf Curl Virus (TYLCV) and Plants" »

Chemosphere


Title:Optimization of algae mixotrophic culture for nutrients recycling and biomass/lipids production in anaerobically digested waste sludge by various organic acids addition
Author(s):Tan XB; Meng J; Tang Z; Yang LB; Zhang WW;
Address:"College of Urban and Environment Sciences, Hunan Provincial Key Laboratory of Comprehensive Utilization of Agricultural and Animal Husbandry Waste Resources, Hunan University of Technology, 88 Taishan Road, Zhuzhou City, Hunan Province, 412007, China. Electronic address: bo98624@163.com. College of Urban and Environment Sciences, Hunan Provincial Key Laboratory of Comprehensive Utilization of Agricultural and Animal Husbandry Waste Resources, Hunan University of Technology, 88 Taishan Road, Zhuzhou City, Hunan Province, 412007, China. College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China"
Journal Title:Chemosphere
Year:2020
Volume:20191129
Issue:
Page Number:125509 -
DOI: 10.1016/j.chemosphere.2019.125509
ISSN/ISBN:1879-1298 (Electronic) 0045-6535 (Linking)
Abstract:"Anaerobically digested waste sludge contains very high concentrations of ammonium and phosphate that are difficult to be purified using traditional processes. Mixotrophic culture of microalgae is a potential way to achieve ammonium and phosphate removal, while harvesting considerable biomass for biodiesel production. In this study, four typical volatile organic acids that could be potentially produced from sludge fermentation were tested for algal mixotrophic culture in anaerobically digested waste sludge. The results showed that the addition of propionate and isovaleric acid had no significant improvement on biomass production, and even inhibited algal growth at low concentration. Fortunately, the addition of acetic and n-butyric acid (initial C/N = 10) increased biomass production by1.9-2.4 times compared to the blank culture. Higher biomass production increased ammonium and orthophosphate removal to 88.3-97.1% and 80.4-93.0%, respectively. Moreover, the optimal addition of volatile organic acids enhanced lipids production by 3.9-6.3 times, while achieving higher saturation degree in biodiesels. The results suggest that adding these optimal volatile organic acids is suitable to enhance nutrients recycling and algal biodiesel production from anaerobically digested waste sludge"
Keywords:"Ammonium Compounds Biofuels Biomass Chlorella/growth & development Fermentation Lipids/biosynthesis Microalgae/physiology Nutrients Organic Chemicals Recycling Sewage *Waste Disposal, Fluid Anaerobically digested waste sludge Chlorella pyrenoidosa Lipids;"
Notes:"MedlineTan, Xiao-Bo Meng, Jing Tang, Zhuo Yang, Li-Bin Zhang, Wen-Wen eng England 2019/12/10 Chemosphere. 2020 Apr; 244:125509. doi: 10.1016/j.chemosphere.2019.125509. Epub 2019 Nov 29"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024