Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractUbiquitination of the yeast a-factor receptor    Next AbstractSorption of diverse organic vapors to snow »

J Biol Chem


Title:Ubiquitination of the PEST-like endocytosis signal of the yeast a-factor receptor
Author(s):Roth AF; Davis NG;
Address:"Department of Surgery, Wayne State University School of Medicine, Detroit, Michigan 48201, USA"
Journal Title:J Biol Chem
Year:2000
Volume:275
Issue:11
Page Number:8143 - 8153
DOI: 10.1074/jbc.275.11.8143
ISSN/ISBN:0021-9258 (Print) 0021-9258 (Linking)
Abstract:"A 58-residue-long, PEST-like sequence within the yeast a-factor receptor (Ste3p) specifies the ubiquitination, endocytosis, and consequent vacuolar degradation of the receptor protein (Roth, A. F., Sullivan, D. M., and Davis, N. G. (1998) J. Cell Biol. 142, 949-961). The present work investigates three lysyl residues that map within this sequence as the potential ubiquitin acceptor sites. Lys --> Arg substitution mutants were tested for effects on both ubiquitination and endocytosis. Results indicate that the three lysines function redundantly; a severe blockade to both ubiquitination and endocytosis is seen only for receptors having all three lysines replaced. Of the three, Lys(432) plays the predominant role; ubiquitination and turnover are significantly impaired for receptors having just the K432R mutation. CNBr fragmentation of the receptor protein, used for the physical mapping of the ubiquitin attachment sites, showed PEST-like sequence lysines to be modified both with single ubiquitin moieties as well with short multi-ubiquitin chains, two or three ubiquitins long. Thus, in addition to being the signal for ubiquitination, the Ste3p PEST-like sequence also provides the site for ubiquitin attachment. To test if this endocytosis signal functions solely for ubiquitination, we have asked if the requirement for the PEST-like sequence in endocytosis might be bypassed through pre-attachment of ubiquitin to the receptor protein. Indeed, Ste3-ubiquitin translational fusions that have a ubiquitin moiety fused to the receptor in place of the PEST-like signal do undergo rapid endocytosis and vacuolar turnover. We conclude that ubiquitin alone, with no required contribution from receptor sequences, provides the sufficient signal for initiating uptake. In addition, our results confirm conclusions originally drawn from studies with the alpha-factor receptor (Terrell, J., Shih, S., Dunn, R., and Hicke, L. (1998) Mol. Cell 1, 193-202), namely that mono-ubiquitin, and not multi-ubiquitin chains provide the primary recognition determinant for uptake. Although mono-ubiquitination suffices, our results indicate that multi-ubiquitination serves to augment the rate of uptake"
Keywords:"*Amino Acid Sequence Cell Compartmentation Endocytosis/*physiology Energy Metabolism/drug effects Half-Life Lysine/genetics/metabolism Molecular Sequence Data Mutagenesis, Site-Directed Protein Processing, Post-Translational Receptors, Cell Surface/*metab;"
Notes:"MedlineRoth, A F Davis, N G eng Research Support, U.S. Gov't, Non-P.H.S. 2000/03/14 J Biol Chem. 2000 Mar 17; 275(11):8143-53. doi: 10.1074/jbc.275.11.8143"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 04-01-2025