Title: | The role of sensory drive in floral evolution |
Address: | "Department of Biological Sciences, Clemson University, Clemson, SC, 29631, USA" |
ISSN/ISBN: | 1469-8137 (Electronic) 0028-646X (Linking) |
Abstract: | "Sensory drive theory posits that the evolution of communication signals is shaped by the sensory systems of receivers and the habitat conditions under which signals are received. It has inspired an enormous body of research, advancing our understanding of signal evolution and speciation in animals. In plants, the extreme diversification of floral signals has fascinated biologists for over a century. While processes involved in sensory drive probably play out in plant-pollinator communication, the theory has not been formally synthesized in this context. However, it has untapped potential to explain mechanisms underlying variation in pollinator preferences across populations, and how environmental conditions impact floral signal transmission and perception. Here I develop a framework of sensory drive for plant-pollinator interactions, identifying similarities and differences from its original conception. I then summarize studies that shed light on how the primary processes of sensory drive - habitat transmission, perceptual tuning, and signal matching - apply to the evolution of floral color and scent. Throughout, I propose research avenues and approaches to assess how sensory drive shapes floral diversity. This framework will be important for explaining patterns of extant floral diversity and examining how altered signaling conditions under global change will impact the evolutionary trajectory of floral traits" |
Keywords: | Animals Biological Evolution Ecosystem *Flowers Odorants Plants *Pollination coevolution communication flower color flower scent pollination sensory ecology signal evolution; |
Notes: | "MedlineKoski, Matthew H eng Research Support, U.S. Gov't, Non-P.H.S. England 2020/03/01 New Phytol. 2020 Aug; 227(4):1012-1024. doi: 10.1111/nph.16510. Epub 2020 May 12" |