Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractVolatiles from nineteen recently genome sequenced actinomycetes    Next AbstractSolid phase microextraction assisted by droplets-based liquid-liquid microextraction for analysis of volatile aromatic hydrocarbons in water by gas chromatography »

Front Plant Sci


Title:Secondary and primary metabolites reveal putative resistance-associated biomarkers against Erysiphe necator in resistant grapevine genotypes
Author(s):Ciubotaru RM; Franceschi P; Vezzulli S; Zulini L; Stefanini M; Oberhuber M; Robatscher P; Chitarrini G; Vrhovsek U;
Address:"Department of Agri-Food, Environmental and Animal Sciences, University of Udine, Udine, Italy. Food Quality and Nutrition Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy. Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michelle All'Adige, Italy. Genomics and Biology of Fruit Crops Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michelle All'Adige, Italy. Laboratory for Flavours and Metabolites, Laimburg Research Centre, Auer (Ora), Italy"
Journal Title:Front Plant Sci
Year:2023
Volume:20230131
Issue:
Page Number:1112157 -
DOI: 10.3389/fpls.2023.1112157
ISSN/ISBN:1664-462X (Print) 1664-462X (Electronic) 1664-462X (Linking)
Abstract:"Numerous fungicide applications are required to control Erysiphe necator, the causative agent of powdery mildew. This increased demand for cultivars with strong and long-lasting field resistance to diseases and pests. In comparison to the susceptible cultivar 'Teroldego', the current study provides information on some promising disease-resistant varieties (mono-locus) carrying one E. necator-resistant locus: BC4 and 'Kishmish vatkana', as well as resistant genotypes carrying several E. necator resistant loci (pyramided): 'Bianca', F26P92, F13P71, and NY42. A clear picture of the metabolites' alterations in response to the pathogen is shown by profiling the main and secondary metabolism: primary compounds and lipids; volatile organic compounds and phenolic compounds at 0, 12, and 48 hours after pathogen inoculation. We identified several compounds whose metabolic modulation indicated that resistant plants initiate defense upon pathogen inoculation, which, while similar to the susceptible genotype in some cases, did not imply that the plants were not resistant, but rather that their resistance was modulated at different percentages of metabolite accumulation and with different effect sizes. As a result, we discovered ten up-accumulated metabolites that distinguished resistant from susceptible varieties in response to powdery mildew inoculation, three of which have already been proposed as resistance biomarkers due to their role in activating the plant defense response"
Keywords:Gc-ms Lc-ms biomarkers loci metabolomics powdery mildew resistance;
Notes:"PubMed-not-MEDLINECiubotaru, Ramona Mihaela Franceschi, Pietro Vezzulli, Silvia Zulini, Luca Stefanini, Marco Oberhuber, Michael Robatscher, Peter Chitarrini, Giulia Vrhovsek, Urska eng Switzerland 2023/02/18 Front Plant Sci. 2023 Jan 31; 14:1112157. doi: 10.3389/fpls.2023.1112157. eCollection 2023"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 26-12-2024