Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractA wearable sensing system for assessment of exposures to environmental volatile organic compounds    Next AbstractUV photoionization ion mobility spectrometry: Fundamentals and applications »

Environ Sci Pollut Res Int


Title:"Optimum dredging time for inhibition and prevention of algae-induced black blooms in Lake Taihu, China"
Author(s):Chen C; Zhong JC; Yu JH; Shen QS; Fan CX; Kong FX;
Address:"State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China. University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China. State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China. jczhong@niglas.ac.cn"
Journal Title:Environ Sci Pollut Res Int
Year:2016
Volume:20160412
Issue:14
Page Number:14636 - 14645
DOI: 10.1007/s11356-016-6627-z
ISSN/ISBN:1614-7499 (Electronic) 0944-1344 (Linking)
Abstract:"Dredging, which is the removal of polluted surface sediments from a water body, is an effective means of preventing the formation of algae-induced black blooms. However, an inappropriate dredging time may contribute to rather than inhibit the formation of black blooms. To determine the optimum dredging time, four treatments were simulated with sediment samples collected from Lake Taihu: dredging in January 2014 (DW), April 2014 (DA), July 2014 (DS), and no dredging (UD). Results showed that typical characteristics associated with black blooms, such as high levels of nutrients (NH4 (+)-N and PO4 (3-)-P), Fe(2+), summation operatorS(2-) ([HS(-)] + [S(2-)]), and volatile organic sulfur compounds (VOSCs), including dimethyl sulfide (DMS), dimethyl disulfide (DMDS), and dimethyl trisulfide (DMTS), were more effectively suppressed in the water column by DW treatment than by UD treatment and the other two dredging treatments. The highest concentrations of NH4 (+)-N and PO4 (3-)-P in the UD water column were 4.09 and 4.03 times, respectively, those in the DW water column. DMS levels in the UD and DS water columns were significantly higher (p < 0.05) than those in the DW water column, but DMDS and DMTS levels were not significantly different between the treatments. After several months of dredging, surface sediments of the DW and DA treatments were well oxidized, and concentrations of Fe(2+) and summation operatorS(2-) were lower than those in UD and DS treatments because of material circulation between sediments and the water column. Water content, which is important for the transport of matter to the overlying water, was lower in the dredged sediments than in the undredged sediments. These factors can suppress the release of Fe(2+) and summation operatorS(2-) into the water column, thereby inhibiting the formation of black blooms. Black coloration occurred in the UD water column on the seventh day, 2 days later, and earlier, respectively, than the DW and DS water columns and almost on the same day as in the DA water column. This phenomenon is mainly attributed to the oxidation of the new sediment surface in the DW and DA water columns, suppressing the release of sulfur into the water column, because of a long incubation period. Thus, dredging in the winter can prevent the formation of black blooms, while dredging in summer may contribute to them"
Keywords:"China *Eutrophication Geologic Sediments/*analysis Lakes/*chemistry Sulfides Time Factors Water/chemistry Water Pollutants, Chemical/analysis Algae Black blooms Controlling effects Lake Taihu Optimum dredging time;"
Notes:"MedlineChen, Chao Zhong, Ji-Cheng Yu, Ju-Hua Shen, Qiu-Shi Fan, Cheng-Xin Kong, Fan-Xiang eng Germany 2016/04/14 Environ Sci Pollut Res Int. 2016 Jul; 23(14):14636-45. doi: 10.1007/s11356-016-6627-z. Epub 2016 Apr 12"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 10-01-2025