Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractVolatile organic compounds in the air of neonatal incubators    Next Abstract"Sinorhizobium meliloti DnaJ Is Required for Surface Motility, Stress Tolerance, and for Efficient Nodulation and Symbiotic Nitrogen Fixation" »

Oecologia


Title:Soil salinization disrupts plant-plant signaling effects on extra-floral nectar induction in wild cotton
Author(s):Briones-May Y; Quijano-Medina T; Perez-Nino B; Benrey B; Turlings TCJ; Bustos-Segura C; Abdala-Roberts L;
Address:"Departamento de Ecologia Tropical, Campus de Ciencias Biologicas y Agropecuarias, Universidad Autonoma de Yucatan, Apartado Postal 4-116, Itzimna, 97000, Merida, Yucatan, Mexico. Laboratory of Evolutionary Entomology, Institute of Biology, University of Neuchatel, Rue Emile-Argand 11, 2000, Neuchatel, Switzerland. Laboratory of Fundamental and Applied Research in Chemical Ecology (FARCE Lab), Institute of Biology, University of Neuchatel, Rue Emile-Argand 11, 2000, Neuchatel, Switzerland. Departamento de Ecologia Tropical, Campus de Ciencias Biologicas y Agropecuarias, Universidad Autonoma de Yucatan, Apartado Postal 4-116, Itzimna, 97000, Merida, Yucatan, Mexico. abdala.luis@yahoo.com"
Journal Title:Oecologia
Year:2023
Volume:20230606
Issue:2
Page Number:313 - 323
DOI: 10.1007/s00442-023-05395-w
ISSN/ISBN:1432-1939 (Electronic) 0029-8549 (Linking)
Abstract:"Plant-plant interactions via volatile organic compounds (VOCs) have received much attention, but how abiotic stresses affect these interactions is poorly understood. We tested the effect of VOCs exposure from damaged conspecifics on the production of extra-floral nectar (EFN) in wild cotton plants (Gossypium hirsutum), a coastal species in northern Yucatan (Mexico), and whether soil salinization affected these responses. We placed plants in mesh cages, and within each cage assigned plants as emitters or receivers. We exposed emitters to either ambient or augmented soil salinity to simulate a salinity shock, and within each group subjected half of the emitters to no damage or artificial leaf damage with caterpillar regurgitant. Damage increased the emission of sesquiterpenes and aromatic compounds under ambient but not under augmented salinity. Correspondingly, exposure to VOCs from damaged emitters had effect on receiver EFN induction, but this effect was contingent on salinization. Receivers produced more EFN in response to damage after being exposed to VOCs from damaged emitters when the latter were grown under ambient salinity, but not when they were subjected to salinization. These results suggest complex effects of abiotic factors on VOC-mediated plant interactions"
Keywords:*Gossypium Plant Nectar Plant Leaves Plants *Sesquiterpenes Extra-floral nectar Priming Salinization Signaling VOCs Wild cotton;
Notes:"MedlineBriones-May, Yeyson Quijano-Medina, Teresa Perez-Nino, Biiniza Benrey, Betty Turlings, Ted C J Bustos-Segura, Carlos Abdala-Roberts, Luis eng 315230_185319/SNSF_/Swiss National Science Foundation/Switzerland Germany 2023/06/06 Oecologia. 2023 Jun; 202(2):313-323. doi: 10.1007/s00442-023-05395-w. Epub 2023 Jun 6"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 07-01-2025