Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractCharacterization of volatile fraction of typical Irpinian wines fermented with a new starter yeast    Next AbstractMicrobial cell-free extracts as sources of enzyme activities to be used for enhancement flavor development of ewe milk cheese »

Appl Environ Microbiol


Title:Effects of the peptide pheromone plantaricin A and cocultivation with Lactobacillus sanfranciscensis DPPMA174 on the exoproteome and the adhesion capacity of Lactobacillus plantarum DC400
Author(s):Calasso M; Di Cagno R; De Angelis M; Campanella D; Minervini F; Gobbetti M;
Address:"Department of Soil, Plant and Food Science, Bari, University of Bari Aldo Moro, Bari, Italy"
Journal Title:Appl Environ Microbiol
Year:2013
Volume:20130208
Issue:8
Page Number:2657 - 2669
DOI: 10.1128/AEM.03625-12
ISSN/ISBN:1098-5336 (Electronic) 0099-2240 (Print) 0099-2240 (Linking)
Abstract:"This study aimed at investigating the extracellular and cell wall-associated proteins (exoproteome) of Lactobacillus plantarum DC400 when cultivated on modified chemically defined medium (CDM) supplemented with the chemically synthesized pheromone plantaricin A (PlnA) or cocultured with L. plantarum DPPMA20 or Lactobacillus sanfranciscensis DPPMA174. Compared to monoculture, two-dimensional gel electrophoresis (2-DE) analysis showed that the exoproteome of L. plantarum DC400 was affected by PlnA and cocultivation with strains DPPMA20 and, especially, DPPMA174. The highest similarity of the 2-DE maps was found between DC400 cells cultivated in monoculture and in coculture with strain DPPMA20. Almost all extracellular proteins (22 spots) and cell wall-associated proteins (40 spots) which showed decreased or increased levels of synthesis during growth in CDM supplemented with PlnA and/or in coculture with strain DPPMA20 or DPPMA174 were identified. On the basis of the sequences in the Kyoto Encyclopedia of Genes and Genomes database, changes to the exoproteome concerned proteins involved in quorum sensing (QS), the transport system, stress response, carbohydrate metabolism and glycolysis, oxidation/reduction processes, the proteolytic system, amino acid metabolism, cell wall and catabolic processes, and cell shape, growth, and division. Cultivation with PlnA and cocultivation with strains DPPMA20 and, especially, DPMMA174 markedly increased the capacity of L. plantarum DC400 to form biofilms, to adhere to human Caco-2 cells, and to prevent the adhesion of potential intestinal pathogens. These phenotypic traits were in part related to oversynthesized moonlighting proteins (e.g., DnaK and GroEL, pyruvate kinase, enolase, and glyceraldehyde-3-phosphate dehydrogenase) in response to QS mechanisms and interaction with L. plantarum DPPMA20 and, especially, L. sanfranciscensis DPPMA174"
Keywords:"Bacterial Adhesion/*drug effects Bacterial Proteins/biosynthesis/*metabolism Bacteriocins/*pharmacology Biofilms/growth & development Caco-2 Cells Cell Line Chaperonin 60/biosynthesis/metabolism Coculture Techniques Gene Expression Regulation, Bacterial G;"
Notes:"MedlineCalasso, Maria Di Cagno, Raffaella De Angelis, Maria Campanella, Daniela Minervini, Fabio Gobbetti, Marco eng Research Support, Non-U.S. Gov't 2013/02/12 Appl Environ Microbiol. 2013 Apr; 79(8):2657-69. doi: 10.1128/AEM.03625-12. Epub 2013 Feb 8"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 09-01-2025