Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractAltering the Sex Pheromone Cyclo(l-Pro-l-Pro) of the Diatom Seminavis robusta towards a Chemical Probe    Next AbstractFeasibility studies for the treatment and reuse of contaminated marine sediments »

Toxicol Res (Camb)


Title:Formaldehyde-induced toxicity in the nasal epithelia of workers of a plastic laminate plant
Author(s):Bono R; Munnia A; Romanazzi V; Bellisario V; Cellai F; Peluso MEM;
Address:"Department of Public Health and Pediatrics, University of Turin , Turin , Italy. Cancer Risk Factor Branch , Cancer Prevention Laboratory , ISPO-Cancer Prevention and Research Institute , Florence , Italy . Email: m.peluso@ispo.toscana.it"
Journal Title:Toxicol Res (Camb)
Year:2016
Volume:20160226
Issue:3
Page Number:752 - 760
DOI: 10.1039/c5tx00478k
ISSN/ISBN:2045-452X (Print) 2045-4538 (Electronic) 2045-452X (Linking)
Abstract:"Formaldehyde is a ubiquitous volatile organic compound widely used for various industrial purposes. Formaldehyde was reclassified by the International Agency for Research on Cancer as a human carcinogen, based on sufficient evidence for a casual role for nasopharyngeal cancer. However, the mechanisms by which this compound causes nasopharyngeal cancer are not completely understood. Therefore, we have examined the formaldehyde-induced toxicity in the nasal epithelia of the workers of a plastic laminate plant in Bra, Cuneo, Piedmont region, North-Western Italy, hence in the target site for formaldehyde-related nasal carcinogenesis. We have conducted a cross-sectional study aimed at comparing the frequency of 3-(2-deoxy-beta-d-erythro-pentafuranosyl)pyrimido[1,2-alpha]purin-10(3H)-one deoxyguanosine (M(1)dG) adducts, a biomarker of oxidative stress and lipid peroxidation, in 50 male exposed workers and 45 male controls using (32)P-DNA post-labeling. The personal levels of formaldehyde exposure were analysed by gas-chromatography mass-spectrometry. The smoking status was estimated by measuring the concentrations of urinary cotinine by gas-chromatography mass-spectrometry. The air monitoring results showed that the exposure levels of formaldehyde were significantly greater for the plastic laminate plant workers, 211.4 +/- 14.8 standard error (SE) mug m(-3), than controls, 35.2 +/- 3.4 (SE) mug m(-3), P < 0.001. The levels of urinary cotinine were 1064 +/- 118 ng ml(-1) and 14.18 +/- 2.5 ng ml(-1) in smokers and non-smokers, respectively, P < 0.001. The M(1)dG adduct frequency per 10(8) normal nucleotides was significantly higher among the workers of the plastic laminate plant exposed to formaldehyde, 111.6 +/- 14.3 (SE), compared to controls, 49.6 +/- 3.4 (SE), P < 0.001. This significant association persisted also when personal dosimeters were used to measure the extent of indoor levels of formaldehyde exposure. No influences of smoking and age were observed across the study population. However, after categorization for occupational exposure, a significant effect was found in the controls, P = 0.018, where the levels of DNA damage were significantly correlated with the levels of urinary cotinine, regression coefficient (beta) = 0.494 +/- 0.000 (SE), P < 0.002. Our findings indicated that M(1)dG adducts constitute a potential mechanism of formaldehyde-induced toxicity. Persistent DNA damage contributes to the general decline of the physiological mechanisms designed to maintain cellular homeostasis"
Keywords:
Notes:"PubMed-not-MEDLINEBono, Roberto Munnia, Armelle Romanazzi, Valeria Bellisario, Valeria Cellai, Filippo Peluso, Marco E M eng England 2016/02/26 Toxicol Res (Camb). 2016 Feb 26; 5(3):752-760. doi: 10.1039/c5tx00478k. eCollection 2016 May 1"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 29-12-2024