Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractModern mass spectrometry in atmospheric sciences: Measurement of volatile organic compounds in the troposphere using proton-transfer-reaction mass spectrometry    Next AbstractHuman skin gas profile of individuals with the people allergic to me phenomenon »

Environ Sci Technol


Title:Fuel-Type Independent Parameterization of Volatile Organic Compound Emissions from Western US Wildfires
Author(s):Sekimoto K; Coggon MM; Gkatzelis GI; Stockwell CE; Peischl J; Soja AJ; Warneke C;
Address:"Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa 236-0027, Japan. NOAA Chemical Sciences Laboratory, Boulder, Corolado 80305, United States. Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States. National Institute of Aerospace, Hampton, Virginia 23666, United States. NASA Langley Research Center, Hampton, Virginia 23681, United States"
Journal Title:Environ Sci Technol
Year:2023
Volume:20230823
Issue:35
Page Number:13193 - 13204
DOI: 10.1021/acs.est.3c00537
ISSN/ISBN:1520-5851 (Electronic) 0013-936X (Print) 0013-936X (Linking)
Abstract:"Volatile organic compounds (VOCs) emitted from biomass burning impact air quality and climate. Laboratory studies have shown that the variability in VOC speciation is largely driven by changes in combustion conditions and is only modestly impacted by fuel type. Here, we report that emissions of VOCs measured in ambient smoke emitted from western US wildfires can be parameterized by high- and low-temperature pyrolysis VOC profiles and are consistent with previous observations from laboratory simulated fires. This is demonstrated using positive matrix factorization (PMF) constrained by high- and low-temperature factors using VOC measurements obtained with a proton-transfer reaction time-of-flight mass spectrometer (PTR-ToF-MS) on board the NASA DC-8 during the FIREX-AQ (Fire Influence on Regional and Global Environments and Air Quality) project in 2019. A linear combination of high- and low-temperature factors described more than 70% of the variability of VOC emissions of long-lived VOCs in all sampled wildfire plumes. An additional factor attributable to atmospheric aging was required to parameterize short-lived and secondarily produced VOCs. The relative contribution of the PMF-derived high-temperature factor for a given fire plume was strongly correlated with the fire radiative power (FRP) at the estimated time of emission detected by satellite measurements. By combining the FRP with the fraction of the high-temperature PMF factor, the emission ratios (ERs) of VOCs to carbon monoxide (CO) in fresh wildfires were estimated and agree well with measured ERs (r(2) = 0.80-0.93)"
Keywords:*Wildfires *Volatile Organic Compounds *Fires Biomass Firex-aq fire radiative power (FRP) high-temperature pyrolysis low-temperature pyrolysis positive matrix factorization (PMF) proton-transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) volat;
Notes:"MedlineSekimoto, Kanako Coggon, Matthew M Gkatzelis, Georgios I Stockwell, Chelsea E Peischl, Jeff Soja, Amber J Warneke, Carsten eng Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. 2023/08/23 Environ Sci Technol. 2023 Sep 5; 57(35):13193-13204. doi: 10.1021/acs.est.3c00537. Epub 2023 Aug 23"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 04-01-2025