Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractEvaluation of Volatile Metabolites Emitted In-Vivo from Cold-Hardy Grapes during Ripening Using SPME and GC-MS: A Proof-of-Concept    Next AbstractEffects of instrumental insemination and insemination quantity on Dufour's gland chemical profiles and vitellogenin expression in honey bee queens (Apis mellifera) »

PLoS One


Title:Effects of insemination quantity on honey bee queen physiology
Author(s):Richard FJ; Tarpy DR; Grozinger CM;
Address:"Department of Entomology, North Carolina State University, Raleigh, North Carolina, United States of America"
Journal Title:PLoS One
Year:2007
Volume:20071003
Issue:10
Page Number:e980 -
DOI: 10.1371/journal.pone.0000980
ISSN/ISBN:1932-6203 (Electronic) 1932-6203 (Linking)
Abstract:"Mating has profound effects on the physiology and behavior of female insects, and in honey bee (Apis mellifera) queens, these changes are permanent. Queens mate with multiple males during a brief period in their early adult lives, and shortly thereafter they initiate egg-laying. Furthermore, the pheromone profiles of mated queens differ from those of virgins, and these pheromones regulate many different aspects of worker behavior and colony organization. While it is clear that mating causes dramatic changes in queens, it is unclear if mating number has more subtle effects on queen physiology or queen-worker interactions; indeed, the effect of multiple matings on female insect physiology has not been broadly addressed. Because it is not possible to control the natural mating behavior of queens, we used instrumental insemination and compared queens inseminated with semen from either a single drone (single-drone inseminated, or SDI) or 10 drones (multi-drone inseminated, or MDI). We used observation hives to monitor attraction of workers to SDI or MDI queens in colonies, and cage studies to monitor the attraction of workers to virgin, SDI, and MDI queen mandibular gland extracts (the main source of queen pheromone). The chemical profiles of the mandibular glands of virgin, SDI, and MDI queens were characterized using GC-MS. Finally, we measured brain expression levels in SDI and MDI queens of a gene associated with phototaxis in worker honey bees (Amfor). Here, we demonstrate for the first time that insemination quantity significantly affects mandibular gland chemical profiles, queen-worker interactions, and brain gene expression. Further research will be necessary to elucidate the mechanistic bases for these effects: insemination volume, sperm and seminal protein quantity, and genetic diversity of the sperm may all be important factors contributing to this profound change in honey bee queen physiology, queen behavior, and social interactions in the colony"
Keywords:"Animals Bees/*physiology Behavior, Animal Brain/metabolism Female Gas Chromatography-Mass Spectrometry *Gene Expression Regulation Genetic Variation *Insemination Male Pheromones *Sexual Behavior, Animal Social Behavior Social Dominance Spermatozoa/metabo;"
Notes:"MedlineRichard, Freddie-Jeanne Tarpy, David R Grozinger, Christina M eng Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. 2007/10/04 PLoS One. 2007 Oct 3; 2(10):e980. doi: 10.1371/journal.pone.0000980"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024