Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract"Improving VOC control strategies in industrial parks based on emission behavior, environmental effects, and health risks: A case study through atmospheric measurement and emission inventory"    Next AbstractLigand-binding properties of odorant-binding protein 6 in Athetis lepigone to sex pheromones and maize volatiles »

J Econ Entomol


Title:"Different Binding Affinities of Three General Odorant-Binding Proteins in Grapholita funebrana (Treitscheke) (Lepidoptera: Tortricidae) to Sex Pheromones, Host Plant Volatiles, and Insecticides"
Author(s):Li LL; Xu BQ; Li CQ; Li BL; Chen XL; Li GW;
Address:"Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an, Shaanxi, P. R. China. Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumchi, Xinjiang, P. R. China"
Journal Title:J Econ Entomol
Year:2022
Volume:115
Issue:4
Page Number:1129 - 1145
DOI: 10.1093/jee/toac063
ISSN/ISBN:1938-291X (Electronic) 0022-0493 (Linking)
Abstract:"Insect general odorant-binding proteins (GOBPs) play irreplaceable roles in filtering, binding, and transporting host odorants to olfactory receptors. Grapholita funebrana (Treitscheke) (Lepidoptera: Tortricidae), an economically important pest of fruit crops, uses fruit volatiles as cues to locate host plants. However, the functions of GOBPs in G. funebrana are still unknown. Three GOBP genes, namely, GfunGOBP1, GfunGOBP2, and GfunGOBP3, were cloned, and their expression profiles in different tissues were detected by the method of real-time quantitative PCR (RT-qPCR). The binding properties of recombinant GfunGOBPs (rGfunGOBPs) to various ligands were investigated via fluorescence binding assays. The three GfunGOBPs were mainly expressed in the antennae of both male and female moths. All these three rGfunGOBPs could bind to sex pheromones, while having varying affinities toward these pheromones. The three rGfunGOBPs also displayed a wide range of ligand-binding spectrums with tested host odorants. The rGfunGOBP1, rGfunGOBP2, and rGfunGOBP3 bound to 34, 33, and 30 out of the 41 tested odorants, respectively. Three rGfunGOBPs had overlapping binding activities to beta-myrcene, (-)-alpha-phellandrene, and ethyl isovalerate with the Ki less than 3.0 muM. The rGfunGOBP1 and rGfunGOBP3 could selectively bind to several insecticides, whereas rGfunGOBP2 could not. Three rGfunGOBPs had the dual functions of selectively binding to sex pheromones and host odorants. Moreover, the rGfunGOBP1 and rGfunGOBP3 can also serve as 'signal proteins' and bind to different insecticides. This study contributed to elucidating the potential molecular mechanism of the olfaction for G. funebrana, and thereby promotes the development of effective botanical attractants or pheromone synergists to control G. funebrana"
Keywords:"Animals Insect Proteins/metabolism *Insecticides/metabolism *Moths/genetics Odorants Pheromones/metabolism Plants/metabolism *Receptors, Odorant/chemistry *Sex Attractants/metabolism chemoreception fluorescence binding assay general odorant-binding protei;"
Notes:"MedlineLi, Lin-Lin Xu, Bing-Qiang Li, Chun-Qin Li, Bo-Liao Chen, Xiu-Lin Li, Guang-Wei eng 31860506/National Natural Science Foundation of China/ 2021JQ-620/Natural Science in Shaanxi Province, China/ YDBK2019-01/Research Startup Foundation of Yan'an University/ Research Support, Non-U.S. Gov't England 2022/05/24 J Econ Entomol. 2022 Aug 10; 115(4):1129-1145. doi: 10.1093/jee/toac063"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 01-01-2025