Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractAmbient ionization and direct identification of volatile organic compounds with microwave-induced plasma mass spectrometry    Next AbstractInfluence of heat processing on the volatile organic compounds and microbial diversity of salted and vacuum-packaged silver carp (Hypophthalmichthys molitrix) fillets during storage »

Proc Natl Acad Sci U S A


Title:Navigating natural variation in herbivory-induced secondary metabolism in coyote tobacco populations using MS/MS structural analysis
Author(s):Li D; Baldwin IT; Gaquerel E;
Address:"Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany; Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany; Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany emmanuel.gaquerel@cos.uni-heidelberg.de"
Journal Title:Proc Natl Acad Sci U S A
Year:2015
Volume:20150713
Issue:30
Page Number:E4147 - E4155
DOI: 10.1073/pnas.1503106112
ISSN/ISBN:1091-6490 (Electronic) 0027-8424 (Print) 0027-8424 (Linking)
Abstract:"Natural variation can be extremely useful in unraveling the determinants of phenotypic trait evolution but has rarely been analyzed with unbiased metabolic profiling to understand how its effects are organized at the level of biochemical pathways. Native populations of Nicotiana attenuata, a wild tobacco species, have been shown to be highly genetically diverse for traits important for their interactions with insects. To resolve the chemodiversity existing in these populations, we developed a metabolomics and computational pipeline to annotate leaf metabolic responses to Manduca sexta herbivory. We selected seeds from 43 accessions of different populations from the southwestern United States--including the well-characterized Utah 30th generation inbred accession--and grew 183 plants in the glasshouse for standardized herbivory elicitation. Metabolic profiles were generated from elicited leaves of each plant using a high-throughput ultra HPLC (UHPLC)-quadrupole TOFMS (qTOFMS) method, processed to systematically infer covariation patterns among biochemically related metabolites, as well as unknown ones, and finally assembled to map natural variation. Navigating this map revealed metabolic branch-specific variations that surprisingly only partly overlapped with jasmonate accumulation polymorphisms and deviated from canonical jasmonate signaling. Fragmentation analysis via indiscriminant tandem mass spectrometry (idMS/MS) was conducted with 10 accessions that spanned a large proportion of the variance found in the complete accession dataset, and compound spectra were computationally assembled into spectral similarity networks. The biological information captured by this networking approach facilitates the mining of the mass spectral data of unknowns with high natural variation, as demonstrated by the annotation of a strongly herbivory-inducible phenolic derivative, and can guide pathway analysis"
Keywords:"Animals Chromatography, High Pressure Liquid Cluster Analysis Cyclopentanes/metabolism Genetic Variation Geography *Herbivory Insecta Metabolomics Oxylipins/metabolism Phenotype Plant Leaves/*metabolism Plant Proteins/metabolism *Secondary Metabolism Sequ;"
Notes:"MedlineLi, Dapeng Baldwin, Ian T Gaquerel, Emmanuel eng 293926/ERC_/European Research Council/International Research Support, Non-U.S. Gov't 2015/07/15 Proc Natl Acad Sci U S A. 2015 Jul 28; 112(30):E4147-55. doi: 10.1073/pnas.1503106112. Epub 2015 Jul 13"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 09-01-2025