Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractCytotoxicity of Thirdhand Smoke and Identification of Acrolein as a Volatile Thirdhand Smoke Chemical That Inhibits Cell Proliferation    Next AbstractDetection of prostate cancer in urine by dogs »

Am J Bot


Title:Broad diversity in monoterpene-sesquiterpene balance across wild sunflowers: Implications of leaf and floral volatiles for biotic interactions
Author(s):Bahmani K; Robinson A; Majumder S; LaVardera A; Dowell JA; Goolsby EW; Mason CM;
Address:"Department of Biology, University of Central Florida, Orlando, FL, USA. Department of Plant Sciences, University of California, Davis, Davis, CA, USA"
Journal Title:Am J Bot
Year:2022
Volume:20221207
Issue:12
Page Number:2051 - 2067
DOI: 10.1002/ajb2.16093
ISSN/ISBN:1537-2197 (Electronic) 0002-9122 (Linking)
Abstract:"PREMISE: As plant lineages diversify across environmental gradients, species are predicted to encounter divergent biotic pressures. This study investigated the evolution of volatile secondary metabolism across species of Helianthus. METHODS: Leaves and petals of 40 species of wild Helianthus were analyzed via gas chromatography-mass spectrometry to determine volatile secondary metabolite profiles. RESULTS: Across all species, 500 compounds were identified; 40% were sesquiterpenes, 18% monoterpenes, 3% diterpenes, 4% fatty acid derivatives, and 35% other compounds such as phenolics and small organic molecules. Qualitatively, annuals and species from more arid western climates had leaf compositions with a higher proportion of total monoterpenes, while erect perennials and species from more mesic eastern habitats contained a higher proportion of total sesquiterpenes. Among species, mass-based leaf monoterpene and sesquiterpene abundance were identified as largely orthogonal axes of variation by principal component analysis. Profiles for leaves were not strongly correlated with those of petals. CONCLUSIONS: Volatile metabolites were highly diverse among wild Helianthus, indicating the value of this genus as a model system and rich genetic resource. The independence of leaf and petal volatile profiles indicates a low level of phenotypic integration between vegetative and reproductive structures, implying vegetative defense and reproductive defense or pollinator attraction functions mediated by terpene profiles in these two organs can evolve without major trade-offs. The major biosynthetic pathways for the major terpenes in wild Helianthus are already well described, providing a road map to deeper inquiry into the drivers of this diversity"
Keywords:*Helianthus Monoterpenes/analysis/metabolism Plant Leaves/metabolism *Sesquiterpenes/analysis/metabolism *Asteraceae/metabolism Terpenes/analysis/metabolism Asteraceae Gc-ms Helianthus monoterpene phenotypic integration sesquiterpene;
Notes:"MedlineBahmani, Keivan Robinson, Anestacia Majumder, Sambadi LaVardera, Angelina Dowell, Jordan A Goolsby, Eric W Mason, Chase M eng Research Support, Non-U.S. Gov't 2022/11/02 Am J Bot. 2022 Dec; 109(12):2051-2067. doi: 10.1002/ajb2.16093. Epub 2022 Dec 7"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 09-01-2025