|
Environ Sci Technol
Title: | "In Situ Equilibrium Polyethylene Passive Sampling of Soil Gas VOC Concentrations: Modeling, Parameter Determinations, and Laboratory Testing" |
|
Author(s): | Gschwend P; Macfarlane J; Jensen D; Soo J; Saparbaiuly G; Borrelli R; Vago F; Oldani A; Zaninetta L; Verginelli I; Baciocchi R; |
|
Address: | "Civil and Environmental Engineering, Massachusetts Institute of Technology (MIT), 15 Vassar Street, Cambridge, Massachusetts 02139, United States. CHIFIS-Novara Laboratories (CENTR), Renewable, New Energies and Material Science Research Center (DE-R&D), Eni S.p.A, Via Fauser 4, Novara 28100, Italy. Eni Rewind SpA, Piazza Boldrini 1, San Donato Milanese 20097, Italy. Laboratory of Environmental Engineering, Department of Civil Engineering and Computer Science Engineering, University of Rome 'Tor Vergata', Via del Politecnico 1, Rome 00133, Italy" |
|
Journal Title: | Environ Sci Technol |
Year: | 2022 |
Volume: | 20220510 |
Issue: | 12 |
Page Number: | 7810 - 7819 |
DOI: | 10.1021/acs.est.1c07045 |
|
ISSN/ISBN: | 1520-5851 (Electronic) 0013-936X (Linking) |
|
Abstract: | "The use of low-density polyethylene (PE) sheets as equilibrium passive soil gas samplers to quantify volatile organic compounds (VOCs) such as benzene, toluene, ethylbenzene, and xylenes, and chlorinated solvents (e.g., trichloroethene and tetrachloroethene) in unsaturated subsurface environments was evaluated via modeling and benchtop testing. Two methods were devised to quantify such VOCs in PE. Key chemical properties, including PE-water (K(PEw)) and PE-air (K(PEa)) partition coefficients and diffusivities in the PE (D(pe)), were determined. These K(PEw), K(PEa), and D(pe) values were consistent with extrapolations of data based on larger compounds. Using these parameter values, field equilibration times of less than 1 day were estimated for such VOCs when using 70-100 mum thick PE sheets. Further, benchtop batch tests carried out in jars filled with VOC-contaminated soils, after 1 or 2 days, showed concentrations in soil air deduced from PE that were consistent with concentrations deduced by analyzing either water or headspace gases recovered from the same tests. Thus, PE-based measurements may overcome inaccuracies from using total soil concentrations and equilibrium partitioning models that may overestimate vapor phase concentrations up to 2 orders of magnitude" |
|
Keywords: | Environmental Monitoring/methods Gases *Polyethylene/chemistry Soil *Volatile Organic Compounds/chemistry Water/chemistry Btex VOCs chlorinated solvents polyethylene passive samplers polyethylene-air partition coefficients soil gas concentrations standard; |
|
Notes: | "MedlineGschwend, Philip MacFarlane, John Jensen, David Soo, Jaren Saparbaiuly, Galym Borrelli, Raffaella Vago, Fabio Oldani, Alessandro Zaninetta, Luciano Verginelli, Iason Baciocchi, Renato eng Research Support, Non-U.S. Gov't 2022/05/11 Environ Sci Technol. 2022 Jun 21; 56(12):7810-7819. doi: 10.1021/acs.est.1c07045. Epub 2022 May 10" |
|
|
|
|
|
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 04-01-2025
|