Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract[Ecology and ethology of Ixodes ricinus L. in Switzerland (Ixodoidea: Ixodidae). 5. Demonstration of a sexual pheromone in Ixodes ricinus]    Next AbstractBiochemical Characterization of a Novel Redox-Regulated Metacaspase in a Marine Diatom »

BMC Bioinformatics


Title:Modularization of biochemical networks based on classification of Petri net t-invariants
Author(s):Grafahrend-Belau E; Schreiber F; Heiner M; Sackmann A; Junker BH; Grunwald S; Speer A; Winder K; Koch I;
Address:"Technical University of Applied Sciences Berlin, FB VI/FB V, Bioinformatics/Biotechnology, Seestr, 64, 13347 Berlin, Germany. grafahr@ipk-gatersleben.de"
Journal Title:BMC Bioinformatics
Year:2008
Volume:20080208
Issue:
Page Number:90 -
DOI: 10.1186/1471-2105-9-90
ISSN/ISBN:1471-2105 (Electronic) 1471-2105 (Linking)
Abstract:"BACKGROUND: Structural analysis of biochemical networks is a growing field in bioinformatics and systems biology. The availability of an increasing amount of biological data from molecular biological networks promises a deeper understanding but confronts researchers with the problem of combinatorial explosion. The amount of qualitative network data is growing much faster than the amount of quantitative data, such as enzyme kinetics. In many cases it is even impossible to measure quantitative data because of limitations of experimental methods, or for ethical reasons. Thus, a huge amount of qualitative data, such as interaction data, is available, but it was not sufficiently used for modeling purposes, until now. New approaches have been developed, but the complexity of data often limits the application of many of the methods. Biochemical Petri nets make it possible to explore static and dynamic qualitative system properties. One Petri net approach is model validation based on the computation of the system's invariant properties, focusing on t-invariants. T-invariants correspond to subnetworks, which describe the basic system behavior.With increasing system complexity, the basic behavior can only be expressed by a huge number of t-invariants. According to our validation criteria for biochemical Petri nets, the necessary verification of the biological meaning, by interpreting each subnetwork (t-invariant) manually, is not possible anymore. Thus, an automated, biologically meaningful classification would be helpful in analyzing t-invariants, and supporting the understanding of the basic behavior of the considered biological system. METHODS: Here, we introduce a new approach to automatically classify t-invariants to cope with network complexity. We apply clustering techniques such as UPGMA, Complete Linkage, Single Linkage, and Neighbor Joining in combination with different distance measures to get biologically meaningful clusters (t-clusters), which can be interpreted as modules. To find the optimal number of t-clusters to consider for interpretation, the cluster validity measure, Silhouette Width, is applied. RESULTS: We considered two different case studies as examples: a small signal transduction pathway (pheromone response pathway in Saccharomyces cerevisiae) and a medium-sized gene regulatory network (gene regulation of Duchenne muscular dystrophy). We automatically classified the t-invariants into functionally distinct t-clusters, which could be interpreted biologically as functional modules in the network. We found differences in the suitability of the various distance measures as well as the clustering methods. In terms of a biologically meaningful classification of t-invariants, the best results are obtained using the Tanimoto distance measure. Considering clustering methods, the obtained results suggest that UPGMA and Complete Linkage are suitable for clustering t-invariants with respect to the biological interpretability. CONCLUSION: We propose a new approach for the biological classification of Petri net t-invariants based on cluster analysis. Due to the biologically meaningful data reduction and structuring of network processes, large sets of t-invariants can be evaluated, allowing for model validation of qualitative biochemical Petri nets. This approach can also be applied to elementary mode analysis"
Keywords:"*Algorithms Computer Simulation *Models, Biological Multigene Family/*physiology Proteome/*metabolism Signal Transduction/*physiology;"
Notes:"MedlineGrafahrend-Belau, Eva Schreiber, Falk Heiner, Monika Sackmann, Andrea Junker, Bjorn H Grunwald, Stefanie Speer, Astrid Winder, Katja Koch, Ina eng Research Support, Non-U.S. Gov't England 2008/02/09 BMC Bioinformatics. 2008 Feb 8; 9:90. doi: 10.1186/1471-2105-9-90"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 10-01-2025