Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractRecycling electroplating sludge as a monolithic catalyst for effective catalytic purification of volatile organic compounds    Next AbstractQuantitative evidence from VOCs source apportionment reveals O(3) control strategies in northern and southern China »

Environ Pollut


Title:Polystyrene microplastics weaken the predator-induced defenses of Daphnia magna: Evidences from the changes in morphology and behavior
Author(s):Wang Z; Wang Y; Qin S; Yang Z; Sun Y;
Address:"Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China. Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China. Electronic address: sunyunfei@njnu.edu.cn"
Journal Title:Environ Pollut
Year:2023
Volume:20221112
Issue:Pt 2
Page Number:120657 -
DOI: 10.1016/j.envpol.2022.120657
ISSN/ISBN:1873-6424 (Electronic) 0269-7491 (Linking)
Abstract:"Polystyrene microplastics are ubiquitous in freshwater ecosystems and have significant impacts on freshwater organisms. Stable interspecific relationships, including the predation and defense relationships between predator and prey, play an extremely important role in maintaining the health of aquatic ecosystems. However, it still remains unknown whether polystyrene microplastics can interfere with predator-induced defenses of prey, especially in behavior change. Therefore, we studied the effects of different particle sizes and concentrations of polystyrene microplastics on the induced defenses related to morphology, reproduction, and behavior of Daphnia magna exposed to the predation risks from a species of zooplanktivorous fish Rhodeus ocellatus. Results showed that polystyrene microplastics weakened the predator-induced defenses of D. magna, including morphology, reproduction, and behavior. Polystyrene microplastics did not affect the beat rate of the second antennae (swimming activity) and thoracic appendage (filter-feeding activity) of D. magna, but R. ocellatus kairomone reduced Daphnia swimming activity. Moreover, in the absence of R. ocellatus predation risks, polystyrene microplastics did not alter the vertical distribution of D. magna in the water column, whereas D. magna exposed to R. ocellatus kairomone stayed deeper in the water; however, when both polystyrene microplastics and fish kairomone were present, D. magna inhabited in shallower water. Furthermore, small-sized microplastics interfered with the inducible behavioral defense of D. magna more strongly than large-sized polystyrene microplastics. Such findings suggested that polystyrene microplastics can weaken the predator-induced defenses of Daphnia, which may increase their risk of predation and alter the population dynamics of zooplankton"
Keywords:"Animals *Daphnia Microplastics Polystyrenes/toxicity Plastics/toxicity Ecosystem *Water Pollutants, Chemical/analysis Fishes Pheromones Water Behavior Daphnia Inducible defense Kairomone;"
Notes:"MedlineWang, Zihang Wang, Yixiang Qin, Shanshan Yang, Zhou Sun, Yunfei eng England 2022/11/16 Environ Pollut. 2023 Jan 1; 316(Pt 2):120657. doi: 10.1016/j.envpol.2022.120657. Epub 2022 Nov 12"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 30-10-2024