Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractPeptides derived from Kex2-processed repeat proteins are widely distributed and highly diverse in the Fungi kingdom    Next AbstractPheromonal divergence between two strains of Spodoptera frugiperda »

Toxicol Rep


Title:Simultaneous blood and brain microdialysis in a free-moving mouse to test blood-brain barrier permeability of chemicals
Author(s):Umezu T; Sano T; Hayashi J; Shibata Y;
Address:"Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan. Center for Environmental Measurement and Analysis, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan"
Journal Title:Toxicol Rep
Year:2020
Volume:20201106
Issue:
Page Number:1542 - 1550
DOI: 10.1016/j.toxrep.2020.10.023
ISSN/ISBN:2214-7500 (Electronic) 2214-7500 (Linking)
Abstract:"Neurotoxic chemicals that pass through the blood-brain barrier (BBB) can influence brain function. Efficient methods to test the permeability of the BBB to specific chemicals would facilitate identification of potentially neurotoxic agents. We report here a simultaneous blood and brain microdialysis in a free-moving mouse to test BBB permeability of different chemicals. Microdialysis sampling was conducted in mice at 3-5 days after implantation of a brain microdialysis probe and 1 day after implantation of a blood microdialysis probe. Therefore, mice were under almost physiological conditions. Results of an intravenous injection of lucifer yellow or uranine showed that the BBB was functioning in the mice under the experimental conditions. Mice were given phenyl arsenic compounds orally, and concentration-time profiles for phenyl arsenic compounds such as diphenylarsinic acid, phenylarsonic acid, and phenylmethylarsinic acid in the blood and brain dialysate samples were obtained using simultaneous blood and brain microdialysis coupled with liquid chromatography-tandem mass spectrometry. Peak area-time profiles for linalool and 2-phenethyl alcohol (fragrance compounds or plant-derived volatile organic chemicals) were obtained using simultaneous blood and brain microdialysis coupled with gas chromatography-mass spectrometry in mice given lavender or rose essential oils intraperitoneally. BBB function was confirmed using lucifer yellow in these mice, and results indicated that the phenyl arsenic compounds, linalool and 2-phenethyl alcohol, passed through the BBB. The present study demonstrates that simultaneous blood and brain microdialysis in a free-moving mouse makes it possible to test the BBB permeability of chemicals when coupled with appropriate chemical analysis methods"
Keywords:Blood-brain barrier Gc/ms Lc/ms/ms Microdialysis Mouse Toxicokinetics;
Notes:"PubMed-not-MEDLINEUmezu, Toyoshi Sano, Tomoharu Hayashi, Junko Shibata, Yasuyuki eng Ireland 2020/12/10 Toxicol Rep. 2020 Nov 6; 7:1542-1550. doi: 10.1016/j.toxrep.2020.10.023. eCollection 2020"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 04-11-2024