Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractPrecursor polyprotein for multiple neuropeptides secreted from the suboesophageal ganglion of the silkworm Bombyx mori: characterization of the cDNA encoding the diapause hormone precursor and identification of additional peptides    Next AbstractTesting for reproductive interference in the population dynamics of two congeneric species of herbivorous mites »

J Endocrinol


Title:The role of dipeptidyl peptidase 4 (DPP4) in the preservation of renal function: DPP4 involvement in hemoglobin expression
Author(s):Sato Y; Kamada T; Yamauchi A;
Address:"Department of Pharmaceutical Information ScienceInstitute of Health Biosciences, The University of Tokushima Graduate School, 1-78-1 Sho-machi, Tokushima City 770-8505 Japan youichi.sato@tokushima-u.ac.jp. Department of Pharmaceutical Information ScienceInstitute of Health Biosciences, The University of Tokushima Graduate School, 1-78-1 Sho-machi, Tokushima City 770-8505 Japan"
Journal Title:J Endocrinol
Year:2014
Volume:20140813
Issue:2
Page Number:133 - 142
DOI: 10.1530/JOE-14-0016
ISSN/ISBN:1479-6805 (Electronic) 0022-0795 (Linking)
Abstract:"In a previous study, we demonstrated that dipeptidyl peptidase 4 (DPP4)-deficient rats were susceptible to reduced glomerular filtration rate as a result of streptozotocin (STZ)-induced diabetes. Therefore, we proposed that DPP4 might be responsible for the preservation of renal function. In this study, to verify the role of DPP4 in the preservation of renal function, we performed a microarray analysis of the kidneys of WT and DPP4-deficient rats after STZ treatment, and gene expression analysis using rat kidneys, human embryonic kidney 293 (HEK293) cells, and human renal cancer cells (CakI-1). The microarray analysis indicated that the expression levels of the transporter activity, heme-binding, and pheromone binding-related genes changed significantly. The results of gene expression analysis indicated that there were no significant differences in the expression levels of hemoglobin mRNA between the DPP4-deficient and WT rats; however, the expression levels of hemoglobin mRNA in the kidneys of DPP4-deficient rats tended to decrease when compared with those of both the non-STZ-treated and STZ-treated WT rats. The expression levels of hemoglobin in HEK293 and Caki-1 cells were significantly decreased when DPP4 was knocked down by siRNA, were significantly increased by the addition of soluble human DPP4, and were also significantly increased by the addition of the DPP4 inhibitor, sitagliptin. The expression level of DPP4 was also significantly increased by the addition of sitagliptin in both cell types. Our findings indicate that DPP4 regulates the expression of the hemoglobin genes, and might play a role in the preservation of renal function; however, the underlying mechanism of this preservation remains to be elucidated"
Keywords:"Animals Dipeptidyl Peptidase 4/*physiology Gene Expression Profiling Gene Expression Regulation HEK293 Cells Hemoglobins/*genetics/metabolism Humans Kidney/*physiology Male Microarray Analysis Rats Rats, Inbred F344 Rats, Transgenic Tumor Cells, Cultured;"
Notes:"MedlineSato, Youichi Kamada, Takanobu Yamauchi, Aiko eng England 2014/08/15 J Endocrinol. 2014 Nov; 223(2):133-42. doi: 10.1530/JOE-14-0016. Epub 2014 Aug 13"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 05-01-2025