Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractMultiple sequence alignment algorithm based on a dispersion graph and ant colony algorithm    Next AbstractCharacterization of Non-coding Regions in B Mating Loci of Agrocybe salicacola Groups: Target Sites for B Mating Type Identification »

PLoS Comput Biol


Title:Modelling of Yeast Mating Reveals Robustness Strategies for Cell-Cell Interactions
Author(s):Chen W; Nie Q; Yi TM; Chou CS;
Address:"Department of Mathematics, University of California, Irvine, Irvine, California, United States of America. Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States of America. Department of Mathematics, The Ohio State University, Columbus, Ohio, United States of America"
Journal Title:PLoS Comput Biol
Year:2016
Volume:20160712
Issue:7
Page Number:e1004988 -
DOI: 10.1371/journal.pcbi.1004988
ISSN/ISBN:1553-7358 (Electronic) 1553-734X (Print) 1553-734X (Linking)
Abstract:"Mating of budding yeast cells is a model system for studying cell-cell interactions. Haploid yeast cells secrete mating pheromones that are sensed by the partner which responds by growing a mating projection toward the source. The two projections meet and fuse to form the diploid. Successful mating relies on precise coordination of dynamic extracellular signals, signaling pathways, and cell shape changes in a noisy background. It remains elusive how cells mate accurately and efficiently in a natural multi-cell environment. Here we present the first stochastic model of multiple mating cells whose morphologies are driven by pheromone gradients and intracellular signals. Our novel computational framework encompassed a moving boundary method for modeling both a-cells and alpha-cells and their cell shape changes, the extracellular diffusion of mating pheromones dynamically coupled with cell polarization, and both external and internal noise. Quantification of mating efficiency was developed and tested for different model parameters. Computer simulations revealed important robustness strategies for mating in the presence of noise. These strategies included the polarized secretion of pheromone, the presence of the alpha-factor protease Bar1, and the regulation of sensing sensitivity; all were consistent with data in the literature. In addition, we investigated mating discrimination, the ability of an a-cell to distinguish between alpha-cells either making or not making alpha-factor, and mating competition, in which multiple a-cells compete to mate with one alpha-cell. Our simulations were consistent with previous experimental results. Moreover, we performed a combination of simulations and experiments to estimate the diffusion rate of the pheromone a-factor. In summary, we constructed a framework for simulating yeast mating with multiple cells in a noisy environment, and used this framework to reproduce mating behaviors and to identify strategies for robust cell-cell interactions"
Keywords:"Cell Communication/*physiology Computational Biology Computer Simulation *Models, Biological Saccharomyces cerevisiae/*cytology/*physiology Saccharomyces cerevisiae Proteins/*metabolism Stochastic Processes;"
Notes:"MedlineChen, Weitao Nie, Qing Yi, Tau-Mu Chou, Ching-Shan eng P50 GM076516/GM/NIGMS NIH HHS/ R01 GM107264/GM/NIGMS NIH HHS/ 2016/07/13 PLoS Comput Biol. 2016 Jul 12; 12(7):e1004988. doi: 10.1371/journal.pcbi.1004988. eCollection 2016 Jul"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 10-01-2025