Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractRelationship between self- perception of malodour and actual estimation of malodour in a group of dental patients    Next AbstractThe scent chemistry of butterflies »

PLoS One


Title:Soil microorganisms alleviate the allelochemical effects of a thyme monoterpene on the performance of an associated grass species
Author(s):Ehlers BK;
Address:"Institute of Biology, University of Southern Denmark, Odense, Denmark. behlers@biology.sdu.dk"
Journal Title:PLoS One
Year:2011
Volume:20111117
Issue:11
Page Number:e26321 -
DOI: 10.1371/journal.pone.0026321
ISSN/ISBN:1932-6203 (Electronic) 1932-6203 (Linking)
Abstract:"BACKGROUND: Plant allelochemicals released into the soil can significantly impact the performance of associated plant species thereby affecting their competitive ability. Soil microbes can potentially affect the interaction between plant and plant chemicals by degrading the allelochemicals. However, most often plant-plant chemical interactions are studied using filter paper bioassays examining the pair-wise interaction between a plant and a plant chemical, not taking into account the potential role of soil microorganisms. METHODOLOGY/PRINCIPAL FINDINGS: To explore if the allelopathic effects on a grass by the common thyme monoterpene 'carvacrol' are affected by soil microorganisms. Seedlings of the grass Agrostis capillaris originating from 3 different thyme sites were raised in the greenhouse. Seedlings were grown under four different soil treatments in a 2*2 fully factorial experiment. The monoterpene carvacrol was either added to standard greenhouse soil or left out, and soil was either sterilized (no soil microorganisms) or not (soil microorganisms present in soil). The presence of carvacrol in the soil strongly increased mortality of Agrostis plants, and this increase was highest on sterile soil. Plant biomass was reduced on soil amended with carvacrol, but only when the soil was also sterilized. Plants originating from sites where thyme produces essential oils containing mostly carvacrol had higher survival on soil treated with that monoterpene than plants originating from a site where thyme produced different types of terpenes, suggesting an adaptive response to the locally occurring terpene. CONCLUSIONS/SIGNIFICANCE: The study shows that presence of soil microorganisms can alleviate the negative effect of a common thyme monoterpene on the performance of an associated plant species, emphasizing the role of soil microbes in modulating plant-plant chemical interactions"
Keywords:"Agrostis/drug effects/growth & development Biodegradation, Environmental Biomass Cymenes Ecosystem Logistic Models Monoterpenes/*metabolism/toxicity Pheromones/*metabolism/toxicity Poaceae/drug effects/*growth & development Seedlings/drug effects/growth &;"
Notes:"MedlineEhlers, Bodil K eng Research Support, Non-U.S. Gov't 2011/11/30 PLoS One. 2011; 6(11):e26321. doi: 10.1371/journal.pone.0026321. Epub 2011 Nov 17"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 09-01-2025