Title: | Selective olfactory attention of a specialised predator to intraspecific chemical signals of its prey |
Author(s): | Cardenas M; Jiros P; Pekar S; |
Address: | "Department of Botany and Zoology, Masaryk University, Kotlarska 2, 61 137, Brno, Czech Republic. zodarion@gmail.com" |
DOI: | 10.1007/s00114-012-0938-9 |
ISSN/ISBN: | 1432-1904 (Electronic) 0028-1042 (Linking) |
Abstract: | "Prey-specialised predators have evolved specific cognitive adaptations that increase their prey searching efficiency. In particular, when the prey is social, selection probably favours the use of prey intraspecific chemical signals by predatory arthropods. Using a specialised ant-eating zodariid spider, Zodarion rubidum, which is known to prey on several ant species and possesses capture and venom adaptations more effective on Formicinae ants, we tested its ability to recognise chemical cues produced by several ant species. Using an olfactometer, we tested the response of Z. rubidum towards air with chemical cues from six different ant species: Camponotus ligniperda, Lasius platythorax and Formica rufibarbis (all Formicinae); and Messor structor, Myrmica scabrinodis and Tetramorium caespitum (all Myrmicinae). Z. rubidum was attracted to air carrying chemical cues only from F. rufibarbis and L. platythorax. Then, we identified that the spiders were attracted to airborne cues coming from the F. rufibarbis gaster and Dufour's gland, in particular. Finally, we found that among several synthetic blends, the decyl acetate and undecane mixture produced significant attraction of spiders. These chemicals are produced only by three Formicine genera. Furthermore, we investigated the role of these chemical cues in the communication of F. rufibarbis and found that this blend reduces their movement. This study demonstrates the chemical cognitive capacity of Z. rubidum to locate its ant prey using chemical signals produced by the ants. The innate capacity of Z. rubidum to olfactory detect different ant species is narrow, as it includes only two ant genera, confirming trophic specialisation at lower than subfamily level. The olfactory cue detected by Zodarion spiders is probably a component of the recruitment or trail pheromone" |
Keywords: | Acetates/pharmacology Alkanes/pharmacology *Animal Communication Animals Ants/chemistry/*physiology Cues Predatory Behavior/drug effects Smell/physiology Spiders/drug effects/*physiology; |
Notes: | "MedlineCardenas, Manuel Jiros, Pavel Pekar, Stano eng Germany 2012/07/05 Naturwissenschaften. 2012 Aug; 99(8):597-605. doi: 10.1007/s00114-012-0938-9. Epub 2012 Jul 4" |