Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractComparative study on key odorants of Jiujiang Fenggang Huangjiu and their succession regularities during aging using sensory-directed flavor analysis    Next AbstractIdentification and Expression Profiles of Candidate Sex Pheromone Biosynthesis Genes by the Transcriptome Analysis of Sex Pheromone Glands in Spodoptera litura and Spodoptera exigua »

Int J Food Microbiol


Title:Effect of high oxygen and high carbon dioxide atmosphere packaging on the microbial spoilage and shelf-life of fresh-cut honeydew melon
Author(s):Zhang BY; Samapundo S; Pothakos V; Surengil G; Devlieghere F;
Address:"Ghent University, Food2Know, Faculty of Bioscience Engineering, Department of Food Safety and Food Quality, Laboratory of Food Microbiology and Food Preservation, Coupure Links 653, 9000 Gent, Belgium"
Journal Title:Int J Food Microbiol
Year:2013
Volume:20130809
Issue:3
Page Number:378 - 390
DOI: 10.1016/j.ijfoodmicro.2013.08.002
ISSN/ISBN:1879-3460 (Electronic) 0168-1605 (Linking)
Abstract:"This study evaluated the potential of modified atmospheres (MAs) combining high oxygen (O(2)) and high carbon dioxide (CO(2)) levels to extend the shelf-life of fresh-cut honeydew melon. Firstly, the effect of MA on the growth and volatile organic metabolite production of Candida sake, Leuconostoc mesenteroides and Leuconostoc gelidum, which had all been previously isolated from spoiled commercial fresh-cut honeydew melon, was evaluated separately on honeydew melon agar at 7 degrees C. Additionally, the effect of selected MAs on the microbial, physico-chemical and sensory quality of commercial fresh-cut honeydew melon cubes was evaluated at 7 degrees C. The results showed that MAs with high O(2) and high CO(2) levels greatly retarded the growth, CO(2) and volatile metabolite production (i.e. ethanol, 2-methyl-1-butanol, ethyl acetate, phenylacetic acid, nonanal) of C. sake on honeydew melon agar; especially MAs consisting of 50% O(2)+50% CO(2) and 70% O(2)+30% CO(2). In contrast, the MAs evaluated only had a minor effect on the growth and volatile metabolite production of L. mesenteroides and L. gelidum. Overall, the effect of MAs on colour, juice leakage, juiciness, and firmness of fresh-cut honeydew melon was small during storage. Sensory preference was generally for fresh-cut honeydew melon cubes packaged in MA of 50% O(2)+50% CO(2). These were still acceptable on day five of storage and had appreciably lower populations of yeasts and lactic acid bacteria, lower quantities of volatile organic compounds, but slightly stronger colour oxidation compared to honeydew melon that was packaged in air. Additionally, most of the samples packed in air had blown by day five due to the large quantity of CO(2) production during storage. Therefore, 50% O(2)+50% CO(2) is a potential MA solution for extending the shelf-life of fresh-cut honeydew melon"
Keywords:"Adult Anti-Infective Agents/pharmacology Atmosphere/chemistry Bacteria/drug effects/growth & development Carbon Dioxide/*pharmacology Colony Count, Microbial Cucurbitaceae/*microbiology Female *Food Microbiology Food Packaging/*methods/standards Fruit/*mi;"
Notes:"MedlineZhang, Bao-Yu Samapundo, Simbarashe Pothakos, Vasileios Surengil, Goknur Devlieghere, Frank eng Research Support, Non-U.S. Gov't Netherlands 2013/09/12 Int J Food Microbiol. 2013 Sep 16; 166(3):378-90. doi: 10.1016/j.ijfoodmicro.2013.08.002. Epub 2013 Aug 9"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 10-01-2025