Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractExpansion of vomeronasal receptor genes (OlfC) in the evolution of fright reaction in Ostariophysan fishes    Next AbstractThe effect of nitrification inhibitors on the aerobic biodegradation of tetracycline antibiotics in swine wastewater »

Math Biosci Eng


Title:LF-ACO: an effective formation path planning for multi-mobile robot
Author(s):Yang L; Fu L; Li P; Mao J; Guo N; Du L;
Address:"School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650093, China"
Journal Title:Math Biosci Eng
Year:2022
Volume:20211109
Issue:1
Page Number:225 - 252
DOI: 10.3934/mbe.2022012
ISSN/ISBN:1551-0018 (Electronic) 1547-1063 (Linking)
Abstract:"Multi-robot path planning is a hot problem in the field of robotics. Compared with single-robot path planning, complex problems such as obstacle avoidance and mutual collaboration need to be considered. This paper proposes an efficient leader follower-ant colony optimization (LF-ACO) to solve the collaborative path planning problem. Firstly, a new Multi-factor heuristic functor is proposed, the distance factor heuristic function and the smoothing factor heuristic function. This improves the convergence speed of the algorithm and enhances the smoothness of the initial path. The leader-follower structure is reconstructed for the position constraint problem of multi-robots in a grid environment. Then, the pheromone of the leader ant and the follower ants are used in the pheromone update rule of the ACO to improve the search quality of the formation path. To improve the global search capability, a max-min ant strategy is used. Finally, the path is optimized by the turning point optimization algorithm and dynamic cut-point method to improve path quality further. The simulation and experimental results based on MATLAB and ROS show that the proposed method can successfully solve the path planning and formation problem"
Keywords:Algorithms Computer Simulation Computer Systems Pheromones *Robotics dynamic tangent point method formation path planning leader follower-ant colony algorithm (LF-ACO) multi-robot;
Notes:"MedlineYang, Liwei Fu, Lixia Li, Ping Mao, Jianlin Guo, Ning Du, Linghao eng Research Support, Non-U.S. Gov't 2021/12/15 Math Biosci Eng. 2022 Jan; 19(1):225-252. doi: 10.3934/mbe.2022012. Epub 2021 Nov 9"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 10-01-2025