Title: | Modular and scalable synthesis of nematode pheromone ascarosides: implications in eliciting plant defense response |
Author(s): | Ning S; Zhang L; Ma J; Chen L; Zeng G; Yang C; Zhou Y; Guo X; Deng X; |
Address: | "Xiangya School of Pharmaceutical Science, Central South University, Changsha, Hunan 410013, China. dengxu3817@csu.edu.cn. College of Plant Science and Technology, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China. guoxi@mail.hzau.edu.cn" |
ISSN/ISBN: | 1477-0539 (Electronic) 1477-0520 (Linking) |
Abstract: | "A highly efficient and modular synthesis of nematode pheromone ascarosides was developed, which highlights a 4-step scalable synthesis of the common intermediate 10 in 23% yield from commercially available l-rhamnose by using orthoesterification/benzylation/orthoester rearrangement as the key step. Six diverse ascarosides were synthesized accordingly. Notably, biological investigations revealed that ascr#1 and ascr#18 treatment resulted in enhanced callose accumulation in Arabidopsis leaves. And ascr#18 also increased the expression of defense-related genes such as PR1, PDF1.2, LOX2 and AOS, which might contribute to the enhanced plant defense responses. This study not only allows a facile access to 1-O, 2-O, and 4-O substituted ascarosides, but also provides valuable insights into their biological activities in inducing plant defense response, as well as their mode of action" |
Keywords: | Animals Arabidopsis/chemistry/*metabolism Arabidopsis Proteins/chemistry/genetics/*metabolism Glycosides/chemical synthesis/chemistry/*metabolism Molecular Conformation Nematoda Pheromones/chemistry/*metabolism Plant Leaves/chemistry/*metabolism; |
Notes: | "MedlineNing, Shuai Zhang, Lei Ma, Jinjin Chen, Lan Zeng, Guangyao Yang, Chao Zhou, Yingjun Guo, Xiaoli Deng, Xu eng Research Support, Non-U.S. Gov't England 2020/06/25 Org Biomol Chem. 2020 Jul 8; 18(26):4956-4961. doi: 10.1039/d0ob00652a" |